Oil Shale, 2007, Vol. 24, No. 3, pp. 405–422

 

MINERAL COMPOSITION OF ESTONIAN OIL SHALE SEMI-COKE SEDIMENTS

(full text in pdf format)

 

R. MÕTLEP, K. KIRSIMÄE, P. TALVISTE, E. PUURA, J. JÜRGENSON

 

 

Semi-coke is a solid waste material left after oil shale retorting in oil shale chemical industry. During more than 80 years of operation more than 110 million tonnes of semicoke have been deposited at retorting plants in Estonia but so far very little is known about the mineral composition of this waste. This paper presents new data on mineral composition of semi-coke and its spatial variation in waste heaps. The composition of semi-coke reflects the changes of mineral matter during the retorting pro­cess. The changes with the terrigenous and carbonate matter is almost negligible during the main phase of retorting, only dehydration and partial trans­formation of clay minerals and decomposition of sulfur compounds occur. At the final step of retorting (900–1000 °C) a slag-like material forms, which consists of amorphous and Ca-silicate phases.

    The deposition and subsequent hydration causes the change in the composition of semi-coke. The most notable change is the formation of ettringite. The composition of mineral matter in semi-coke waste heap is relatively uniform. The variations are probably due to both physical and chemical separation during deposition of the sediment and to different diagenetic/hydration processes.

 

REFERENCES

 

1.        Teedumäe, A., Raukas, A. The possibility of integrating sustainability into legal framework for use of oil shale reserves // Oil Shale. 2006. Vol 23, No. 2. P. 119–124.

2.        Golubev, N. Solid heat carrier technology for oil shale retorting // Oil Shale. 2003. Vol. 20, No. 3S. P. 324–332.

3.        Kahru, A., Põllumaa, L. Environmental hazard of the waste streams of Estonian oil shale industry: an ecotoxicological review // Oil Shale. 2006. Vol. 23, No. 1. P. 53–93.

4.        Veski, R. The volumes of spent shale from Estonian oil-shale processing units in 1921–2002 // Oil Shale. 2005. Vol. 22, No. 3. P. 345–357.

5.        Kuusik, R., Martins, A., Pihu, T., Pesur, A., Kaljuvee, T., Prikk, A., Trikkel, A., Arro, H. Fluidized-bed combustion of oil shale retorting solid waste // Oil Shale. 2004. Vol. 21, No. 3. P. 237–248.

6.        Kattai, V., Saadre, T., Savitski, L. Estonian oil shale: geology, resource, mining conditions. Tallinn: Geological Survey of Estonia, 2000. 226 pp. [in Estonian].

7.        Ots, A. Oil shale combustion technology // Oil Shale. 2004. Vol. 21, No 2. P. 149–160.

8.        Bauert, H., Kattai, V. Kukersite oil shale // Geology and Mineral Resources of Estonia / A. Raukas, A. Teedumae (eds.). Tallinn: Estonian Academy Publishers, 1997. P. 313–327.

9.        Koel, M. Estonian oil shale // Oil Shale Extra, 1999. Available at: http://www.kirj.ee/oilshale/Est-OS.htm.

10.     Lille, Ü., Heinmaa, I., Müürisepp, A. M., Pehk, T. Investigation of kukersite structure using NMR and oxidative cleavage: On the nature of phenolc precursors in the kerogen of Estonian kukersite // Oil Shale. 2002. Vol. 19, No. 2. P. 101–116.

11.     Gavrilova, O., Randla, T., Vallner, L., Strandberg, M., Vilu, R. Life Cycle Analysis of the Estonian Oil Shale Industry. Estoninan Fund for Nature, Tallinn University of Technology, Tallinn, 2005. 145 pp. Manuscript.

12.     Utsal, K. Comprehensive investigation of oil shale material composition by X-ray diffrection method // Oil Shale. 1984. Vol. 1, No. 1. P. 69–80 [in Russian].

13.     Kann, J., Elenurm, A., Rohtla, I., Golubev, N., Kaidalov, A., Kindorkin, B. About thermal low-temperature processing of oil shale by solid heat carrier method // Oil Shale. 2004. Vol. 22, No. 3. P. 195–203.

14.     Soone, J., Doilov, S. Sustainable utilization of oil shale resources and comprasion of contemporary technologies used for oil shale processing // Oil Shale. 2003. Vol. 20, No. 3S. P. 311–323.

15.     Taylor, J. C. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile // Powder Diffraction. 1991. Vol. 6. P. 2–9.

16.     Ward, C. R., Taylor, J. C., Matulis, C. E., Dale, L. S. Quantification of mineral matter in the Argonne Premium Coals using interactive Rietveld-based X-ray diffraction // International Journal of Coal Geology. 2001. Vol. 46. P. 67–82.
doi:10.1016/S0166-5162(01)00014-3

17.     Dollase, W. A. Correction of intensities for preferred orientation in powder X-ray diffractometry – application of the March model // J. Appl. Crystallogr. 1986. Vol. 19. P. 267–272.
doi:10.1107/S0021889886089458

18.     Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers // Oil Shale. 2005. Vol. 22, No. 4S. P. 407–419.

19.     Fowler, R. K., Traina, S. J., Bigham, J. M., Soto, U. I. Solution chemistry and mineralogy of clean coal technology by-products in a long term equilibration study // Agronomy Abstracts. Madison: American Society of Agronomy, WI, USA, 1993. Vol. 30. P. 361.

20.     Myneni, S. C. B., Traina, S. J., Logan, T. L. Ettringite solubility and geo­chemistry of the Ca(OH)2–Al2(SO4)3–H2O system at 1 atm pressure and 298 K // Chemical Geology. 1998. Vol. 148. P. 1–19.
doi:10.1016/S0009-2541(97)00128-9

21.     Puura, E. Oil Shale Ash from Thermal Power Plants in Estonia: Its Disposal and Possible Uses // MSc. Thesis. Manchester: Department of Enviromental Biology, Manchester University, 1992. 142 pp.

22.     Nishikawa, T., Suzuki, K., Ito, S., Sato, K., Takebe, T. Decomposition of synthetic ettringite by carbonation // Cement and Concrete Research. 1992. Vol. 22. P. 6–14.
doi:10.1016/0008-8846(92)90130-N

23.     Pajares, I., Martínez-Ramírez, S., Blanco-Varela, M. T. Evolution of ettringite in presence of carbonate and silicate ions // Cement and Concrete Composite. 2003. Vol. 25. P. 861–865.

24.     Doner, H. E., Lynn, W. C. Carbonate, halide, sulfate and sulfide minerals // Minerals in Soil Environments / J. B. Dixon, S. B. Weed (eds.). SSSA Book Series, 1989. Vol. 1. P. 279–324.

25.     Kespre, T. Mineralogy of the oil-shale ash deposits at Eesti Thermal Power Plant // MSc. Thesis. Tartu: University of Tartu, Institute of Geology, 2004. 45 pp. [in Estonian].

26.     Puura, E., Pihlak, A. Oxidation of dictyonema shale in Maardu mining waste dumps // Oil Shale. 1998. Vol. 15, No. 3. P. 239–267.