Oil Shale, 2007, Vol. 24, No. 2, pp. 147–157

 

PYROLYSIS CHARACTERISTICS OF HUADIAN OIL SHALES

(full text in pdf format)

 

WANG QING, SUN BAIZHONG, HU AIJUAN, BAI JINGRU, LI SHAOHUA

 

 

Three oil shale samples from different areas in Huadian have been non-iso­thermally pyrolysed using thermogravimetric analyzer (TGA). The analyses were performed at different heating rates (10, 20, 40, 50, 100 K min–1) up to 900 °C with nitrogen as purge gas. The weight loss curve showed that pyrolysis of oil shale took place mainly in the range of 200–600 °C. It was attributed to decomposition of hydrocarbonaceous material. At higher temperatures, the weight lessens due to decomposition of carbonates. On the basis of experimental data a model of pyrolysis kinetics was proposed. Kinetic parameters – activation energy (E) and frequency factor (A) – were determined by two methods: the direct Arrhenius plot method and the integral method. There was no clear relationship between activation energy and heating rate. The integral method of analysis gave lower values of activation energy than the direct Arrhenius plot method.

 

 

REFERENCES

1.        Kök, M. V., Pamir, M R. ASTM kinetics of oil shales // J. Therm. Anal. 1998. Vol. 53, No. 2. P. 567–575.

2.        Barkia, H., Belkbir, L., Jayaweera, S. A. A. Thermal analysis studies of oil shale residual carbon // J. Therm. Anal. Cal. 2004. Vol. 76, No. 2. P. 615622.
doi:10.1023/B:JTAN.0000028040.16844.40

3.        Qian, J. L,. Wang, J. Q., Li, S. Y. Oil shale development in China // Oil Shale. 2003. Vol. 20, No. 3. P. 356359.

4.        Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing condition using thermogravimetric analysis // Applied Energy. 2000. Vol. 66, No. 2. P. 113133.
doi:10.1016/S0306-2619(99)00038-0

5.        Wang, Q., Bai, J. R., Sun, B. Z., Sun, J. Comprehensive utilization strategy of Huandian oil shale // Oil Shale. 2005. Vol. 22, No. 3. P. 305316.

6.        Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil-shales // Applied Energy. 1999. Vol. 63, No. 4. P. 269286.
doi:10.1016/S0306-2619(99)00033-1

7.        Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistan oil shales // Fuel. 1999. Vol. 78, No. 6. P. 653662.

8.        Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decomposi­tion kinetics of two Jordanian oil shales under different processing condi­tions // Fuel Process. Technol. 2000. Vol. 63, No. 1. P. 5770.
doi:10.1016/S0378-3820(99)00064-8

9.        Doğan, Ö. M., Uysal, B. Z. Non-isothermal pyrolysis kinetics of three Turkish oil shales // Fuel. 1996. Vol. 75, No. 12. P. 14241428.

10.     Thakur, D. S., Nuttal, H. E. Kinetics of pyrolysis Moroccon oil shale by thermogravimetry // Ind. Eng. Chem. Res. 1987. Vol. 26, No. 7. P. 13511356.
doi:10.1021/ie00067a015

11.     Williams P. F. V. Thermogravimetry and decomposition kinetics of British Kimmeridge Clay oil shale // Fuel. 1985. Vol. 64, No. 4. P. 540545.

12.     Khraisha, Y. H., Shabib, I., M. Thermal analysis of shale oil using thermo­gravimetry and differential scanning calorimetry // Energy Convers. Mngm. 2002. Vol. 43, No. 2. P. 229239