Oil
Shale, 2007, Vol. 24, No. 2, pp. 117–133
FORMATION OF VOLATILE ORGANIC COMPOUNDS AT THERMOOXIDATION OF SOLID FOSSIL FUELS
T. KALJUVEE, E. EDRO, R. KUUSIK
Thermoanalytical technique combined with FTIR equipment was used for comparative estimation of thermal behavior of samples with simultaneous identification of gaseous compounds formed and emitted at thermooxidation of solid fossil fuels (oil shale, semicoke, coal) from different deposits (Estonia, Israel, Jordan, Morocco, Bulgaria, Russia). The experiments were carried out under dynamic heating conditions up to 900 °C at heating rates of 5, 10 or 50 K min–1 in a stream of dry air. In addition to CO2 and H2O as major gases evolved, a number of individual volatile species like CO, SO2, COS, methane, ethane, ethylene, formaldehyde, acetaldehyde, formic acid, methanol, chlorobenzene, etc. were determined. Notable differences in the composition of gaseous compounds evolved as well as differences in the absorbance of individual species in FTIR spectra depending on the origin of fuel and on the heating rate used were determined.
REFERENCES
1.
Lahtvee, V. Energy and Environment. Estonian Energy
1999. Ministry of Economic Affairs. Tallinn, 2000. P. 52–59.
2.
The state of Estonia’s environment on the threshold of the 21st century.
Information and Technological Center of the Ministry of Environment. Tallinn,
2000. 96 pp [in Estonian].
3. Ots, A. Formation of air-polluting compounds while burning oil shale // Oil Shale. 1992. Vol. 9, No. 1. P. 63–75.
4. Carangelo, R. M., Solomon, P. R., Gerson, D. J. Application of TG-FT-i. r. to study hydrocarbon structure and kinetics // Fuel. 1987. Vol. 66, No. 7. P. 960–967.
5.
Zanier, A. Thermogravimetric Fourier transform infrared spectroscopy of hydrocarbon
fuel residues // J. Therm. Anal. Cal. 1999. Vol. 56, No. 3. P.
1389–1396.
doi:10.1023/A:1010170810085
6.
Strezov, V.,
Lucas, J. A., Evans, T. J., Strezov, L. Effect of heating rate on the thermal properties and
devolatilisation of coal // J. Therm. Anal. Cal. 2004. Vol. 78,
No. 2. P. 385–397.
doi:10.1023/B:JTAN.0000046105.01273.61
7. Bassilakis, R., Carangelo, R. M., Wójtowiecz, M. A. TG-FTIR analysis of biomass pyrolysis // Fuel. 2001. Vol. 80, No. 12. P. 1765–1786.
8. Pitkänen, I., Huttunen, J., Halttunen, H., Vesterinen, R. Evolved gas analysis of some solid fuels by TG-FTIR // J. Therm. Anal. Cal. 1999. Vol. 56, No. 3. P. 1253–1259.
9.
Lu, R., Purushotama, S., Yang, X.,
Hyatt, J., Pan, W-P., Riley, J. T., Lloyd, W. G. TG/FTIR/MS study of organic compounds evolved during the co-firing
of coal and refuse-derived fuels // Fuel Process. Technol. 1999. Vol.
59, No. 1. P. 35–50.
doi:10.1016/S0378-3820(99)00011-9
10. Kaljuvee, T.,
Pelt, J., Radin, M. TG-FTIR study of
gaseous compounds evolved at thermooxidation of oil shale // J.
Therm. Anal. Cal. 2004. Vol. 78, No. 2. P. 399–414.
doi:10.1023/B:JTAN.0000046106.53195.26
11. Kundel, H. A., Petaja, L. I. Thermogravimetric analysis of oil shale in air atmosphere // Oil Shale. 1985. Vol. 2, No. 4. P. 273–378 [in Russian].
12. Kök, M. V. Evaluation of Turkish oil shales – thermal analysis approach // Oil Shale. 2001. Vol. 18, No. 2. P. 131–138.
13. Cebulak, S.,
Gawæda, A., Langier-Kuýniarowa, A.
Oxyreactive thermal analysis of dispersed organic matter, kerogen and
carbonization products – a tool for investigation of the heated rock
masses // J. Therm. Anal. Cal. 1999. Vol. 56, No. 2. P. 917–924.
doi:10.1023/A:1010147315595
14. Paulik, F.,Paulik, J.,
Arnold, M. Kinetics and mechanism of the
decomposition of pyrite under conventional and quasi-isothermal –
quasi-isobaric thermoanalytical conditions // J. Therm. Anal. Cal.
1982. Vol. 25, No. 2. P. 313–325.
doi:10.1007/BF01912956
15. Jorgensen, F.
R. A., Moyle, F. J. Phases formed during the thermal analysis of pyrite in
air // J. Therm. Anal. 1982. Vol. 25, No. 2. P. 473–485.
doi:10.1007/BF01912973
16. Pelovski, Y.,
Petkova, V. Investigation on thermal
decomposition of pyrite. Part I // J. Therm. Anal. Cal. 1999.
Vol. 56, No. 1. P. 95–99.
doi:10.1023/A:1010135425009
17. Lille, Ü. Current views on the origin of Estonian kukersite kerogen // Oil Shale. 2002. Vol. 19, No. 1. P. 3–18.
18. Kök, M. V.,
Pamir, M. R. ASTM kinetics of oil
shale // J. Therm. Anal. Cal. 1998. Vol. 53, P. 567–575.
doi:10.1023/A:1010109929197
19.
Kaljuvee, T.,
Kuusik, R. Emission of sulphur dioxide during
thermal treatment of fossil fuels // J. Therm. Anal. Cal. 1999. Vol. 56, P, No. 3. 1243–1251.
20. Kaljuvee, T., Kuusik, R., Veiderma, M. Emission of sulphur dioxide by thermooxidation of Estonian oil shale and coal // Proc. Estonian Acad. Sci. Engng. 1998. Vol. 4, No. 3. P. 199–1208.
21. Kaljuvee, T., Kuusik, R., Radin, M., Bender, V. Carbon dioxide binding in the heterogeneous systems formed at combustion of oil shale. 4. Reactivity of ashes towards acid gases in the system fly ash-flue gases // Oil Shale. 2004. Vol. 21, No. 4. P. 13–26.
22. Xie, W., Liu, K., Pan, W-P., Riley, J. T. Interaction between emissions of SO2 and HCl in fluidized bed combustors // Fuel. 1999. Vol. 78, No. 12. P. 1425–1436.
23. Liu, K., Pan, W.-P., Riley, J. T. A study of chlorine behavior in a simulated fluidized bed combustion system // Fuel. 2000. Vol. 79, No. 9. P. 1115–1124.
24. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers // Oil Shale. 2005. Vol. 22, No. 4 Special. P. 407–420.
25. Partanen, J., Backman, P., Backman, R., Hupa, M. Absorption of HCl by limestone in hot flue gases. Part III: simultaneous absorption with SO2 // Fuel. 2005. Vol. 84, No. 12–13. P. 1685–1694.
26. Ots, A., Pihu, T., Arro, H. Influence of sulphur dioxide and hydrogen chloride on properties of oil shale ash // Oil Shale. 2005. Vol. 22, No. 4 Special. P. 435–444.