Oil
Shale, 2007, Vol. 24, No. 2, pp. 109–116
H2S REMOVAL FROM SOUR LIQUEFIED PETROLEUM GAS USING JORDANIAN OIL SHALE ASH
R. SHAWABKEH, A. HARAHSHEH
Oil shale ash was used to adsorb hydrogen sulfide from liquefied petroleum gas (LPG). Fixed mass of ash of particle size 500–710 µm showed a sorption capacity of 30 mg H2S per liter of LPG and one gram of ash from 150 ml LPG containing 467 ppm H2S. This value increased with increasing the volume of spiked gas and decreasing the particle size of the ash, while it decreased with increasing bed temperature. Ash samples did not adsorb hydrocarbons.
REFERENCES
1. Bouzaza, A., Laplanche, A., Marsteau, S. Adsorption-oxidation of hydrogen sulfide on activated carbon fibers: effect of the composition and the relative humidity of the gas phase // Chemosphere. 2004. Vol. 54, No. 4. P. 481–488.
2. Jia., G., Aik, L. Adsorption of sulphur dioxide onto activated carbon prepared from oil-palm shells with and without pre-impregnation // Sep. Purif. Technol. 2003. Vol. 30, No. 3. P. 265–273.
3. Tang, Q., Zhang, Z., Zhu, W., Cao, Z. SO2 and NO selective adsorption properties of coal-based activated carbon // Fuel. 2005. Vol. 84, No. 4. P. 461–465.
4. Lucas, S., Calvo, M., Palencia, C., Cocero, M. Mathematical model of supercritical CO2 adsorption on activated carbon: Effect of operating conditions and adsorption scale-up // J. Supercrit. Fluids. 2004. Vol. 32, No. 1. P. 93–201.
5. Przepiórski, J., Skrodzewicz, M., Morawski, A. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption // Appl. Surface Sci. 2004. Vol. 225, No. 1. P. 235–242.
6.
Steriotis, T.,
Stefanopoulos, K., Kanellopoulos, N., Mitropoulos, A.,
Hoser, A. The structure of adsorbed CO2
in carbon nanopores: a neutron diffraction study // Colloids Surf. A:
Physicochemical and Engineering Aspects. 2004. Vol. 241, No. 1. P. 239–244.
doi:10.1016/j.colsurfa.2004.04.038
7. Bagreev, A., Menendez, J., Dukhno, I., Tarasenko, Y., Bandosz, T. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide // Carbon. 2004. Vol. 42, No. 3. P. 469–476.
8. Boudou, J., Chehimi, M., Broniek, E., Siemieniewska, T., Bimer, J. Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment // Carbon. 2003. Vol. 41, No. 10. P. 1999–2007.
9. Lee, W., Reucroft, P. Vapor adsorption on coal- and wood-based chemically activated carbons: (III) NH3 and H2S adsorption in the low relative pressure range // Carbon. 1999. Vol. 37, No. 1. P. 21–26.
10. Davini, P. Investigation of the SO2 adsorption properties of Ca(OH)2-fly ash systems // Fuel. 1996. Vol. 75, No. 6. P. 713–716.
11. Laperdrix, E.,
Costentin, G., Saur, O., Lavalley, J., Nédez, C.,
Savin-Poncet, S., Nougayrède, J.
Selective oxidation of H2S over CuO/Al2O3:
Identification and Role of the Sulfurated Species formed on the Catalyst
during the Reaction // J. Catal. 2000. Vol. 189, No. 1. P. 63–69.
doi:10.1006/jcat.1999.2691
12. Yanxin, C., Yi, J., Wenzhao, L., Rongchao, J., Shaozhen, L., Wenbin, H. // Adsorption and interaction of H2S/SO2 on TiO2 // Catalysis Today. 1999. Vol. 50, No. 1. P. 39–47.
13. Yasyerli, S.,
Ar, I., Dogu, G., Dogu, T. Removal
of hydrogen sulfide by clinoptilolite in a fixed bed
adsorber // Chem. Eng. Process. 2002. Vol. 41, No. 9. P. 785–792.
doi:10.1016/S0255-2701(02)00009-0
14. Ferino, I.,
Monaci, R., Rombi, E., Solinas, V., Burlamacchi, L. Temperature-programmed desorption of H2S from
alkali-metal zeolites // Thermochim. Acta. 1992. Vol. 199. P. 45–55.
doi:10.1016/0040-6031(92)80249-V
15. Khulbe, K., Mann, R. Interaction of V2O5-NaY zeolite with H2S and SO2 // Zeolites. 1994. Vol. 14, No. 6. P. 476–480.
16. Karge, H.,
Raskó, J. Hydrogen sulfide adsorption on
faujasite-type zeolites with systematically varied Si-Al ratios // J.
Colloid Interface Sci. 1978. Vol. 64, No. 3. P. 522–532.
doi:10.1016/0021-9797(78)90394-6
17. Schroeder, K. Sequestration of Carbon Dioxide in Coal Seams. http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/3a4.pdf.