Oil Shale, 2007, Vol. 24, No. 2, pp. 101–108

 

COMPARISON OF OIL SHALES FROM DIFFERENT DEPOSITS:
OIL SHALE PYROLYSIS AND CO-PYROLYSIS WITH ASH

(full text in pdf format)

 

V. OJA, A. ELENURM, I. ROHTLA, E. TALI, E. TEARO, A. YANCHILIN

 

 

This paper studies the effect of alkaline oil shale ash on oil shale thermal decomposition products during oil shale and ash co-retorting. Experiments with and without ash were carried out in a standard laboratory-scale retort (Fischer Assay) to determine relative yields of retorting products and sulfur distribu­tion in them. Oil shales compared in this study were kukersite and Dictyonema shales from Estonia, Jordanian El-Lajjun oil shale and Saveljev oil shale from Russia. Oil shales were primarily selected due their difference in sulfur composition. Ash for co-retorting experiments was prepared from kukersite oil shale. The ash contains about 57.5 wt.% alkaline compounds CaO and MgO.

 

REFERENCES

1.        Efimov V. M., Piik E. E. The processing of oil shale in gas-generator. Publica­tions of United Nations Symposium on the Development and Utilization of Oil Shale Resources. August 26 – September 4, 1968. Tallinn (USSR). P. 282–291 [in Russian].

2.        Soone, J., Doilov, S. Sustainable utilization of oil shale resources and com­parison of contemporary technologies used for oil shale processing // Oil Shale. 2003. Vol. 20, No. 4. P. 311–323.

3.        Stelmakh G. P., Tyagunov B. I., Chikul, V. I., Gudkin, M. Z., Senchugov, K. I. Energy process plant for fine-grain shale // Oil Shale. 1985. Vol. 2, No. 2. P. 189–196 [in Russian].

4.        Kann, J., Elenurm, A., Rohtla, I., Golubev, N., Kaidalov, A., Kindorkin, B. About thermal low-temperature processing of oil shale by solid heat carrier method // Oil Shale. 2004.Vol. 21, No. 3. P. 195–203.

5.       Van der Ham, A. G. J., Heesink, A. B. M., Prins, W., Swaaij, W. P. M. Proposal for a regenarative high-temperature process for coal gas cleanup with calcined limestone // Ind. Eng. Chem. Res. 1996. Vol. 35, No. 5. P. 1487–1495.
doi:10.1021/ie950209z

6.        Killingley, J. S., Callaghan, D. G., Day, S. J. Removal of hydrogen sulphide by combusted Rundle oil shale: sulphidation of iron oxides // Fuel. 1989. Vol. 68, No. 12. P. 1598–1602.

7.        Slimane, R. B., Abbasin, J. Utilization of metal oxide-containing waste materials for hot coal gas desulfurization // Fuel Process. Technol. 2001. Vol. 70, No. 2. P. 73–113.

8.        Yorudas, K.-A., Gavrilov, A. F. Study of the El-Lajjun (Jordan) oil shale and the products of its processing at the units with solid heat carrier // Oil Shale. 1999. Vol. 16, No. 4 Special. P. 399–409 [in Russian].

9.        Oja, V., Elenurm, A., Rohtla, I. Manuscript in preparation. 2007.

10.     Koch, R. P., Kirret, O. G., Oamer, P. E., Ahelik, V. P., Kõrts, A. V. Studies on the flotation process of Estonian kukersite // Thesis of all-union conference on the benefication of oil shales, Moscow, 1973. P. 115–122 [in Russian].

11.     Estonian standard EVS 664:1995, Solid fuels. Sulphur content. Determination of total sulphur and its bonding forms. P. 13 [in Estonian].

12.     Urov, K., Sumberg, A. Characteristics of Oil Shales and Shale-Like Rocks of Known Deposits and Outcrops // Oil Shale. 1999. Vol. 16, No. 3 Special. P. 1–64.

13.     Hamarneh, J. Oil Shale Resources Development in Jordan. – Amman, 1998. P. 41.

14.   Ko, T. H., Chu, H., Chaung, L. K., Tseng, T. K. High temperature removal of hydrogen sulfide using an N-150 sorbent // J. Hazard. Mater. 2004. Vol. 114, No. 1–3. P. 145–152.
doi:10.1016/j.jhazmat.2004.08.023

15.     Garnovskaja, G. N. Refractometric method for determining phenols in the oil shale products // Chemistry and technology of oil shale thermal processing products. 1954. Vol. 2. P. 138–144 [in Russian].

16.     Raudsepp, H. About the method for determining of organic mass in Baltic oil shales // Proc. Tallinn Polyteh. Inst. 1953. No. 46. P. 22 [in Russian].