PHYTOTOXICITY OF OIL SHALE SEMI-COKE AND ITS AQUEOUS EXTRACTS: A STUDY BY SEED GERMINATION BIOASSAY

(full text in pdf format)

 

H. RAAVE(a), S. KAPAK(b), K. ORUPÕLD (b)

(a)  Institute of Agricultural and Environmental Sciences, Estonian University of Life Science, Kreutzwaldi 56, 51014, Tartu, Estonia

(b)  Institute of Physical Chemistry, University of Tartu, Jakobi 2, 51014 Tartu, Estonia

 

 

Phytotoxicity of oil shale semi-coke has been studied by germination bioassay. Timothy (Phleum pratense) seeds were germinated on solid semi-coke and in its water extracts. Fresh semi-coke completely blocked seed germination but weathering significantly decreased its inhibition effect. The inhibitory effect of aqueous extracts was less than that of solid semi-coke, and it decreased as the liquid-to-solid ratio used for preparing the extracts increased. The inhibition of seed germination was mainly caused by high content of soluble salts in semi-coke. Good correlations were found between seed germination and electrical conductivity, and Ca2+ content of water extracts.

 

 

REFERENCES

1.        Truu, J., Talpsep, E., Velder, E., Heinaru, E., Heinaru, A. Enhanced bio­degrada­tion of oil shale chemical industry solid wastes by phytoremediation and bioaugmentation // Oil Shale. 2003. Vol. 20, No. 1. P. 421–428.

2.        Raave, H., Kuldkepp, P., Leedu, E., Merivee, A. Recultivation substance and compost produced from semi-coke: The effect on soil characteristics, the yield of field crops and environment // Oil Shale. 2004. Vol. 21, No. 1. P. 59–73.

3.        Raave  H. Recultivation of oil shale semi-coke dumps with grasses and legumes: problems and potential // Integrating Efficient Grassland Farming and Biodiversity / Proceedings of the International Occasional Symposium of the EGF. Tartu. 2005. P. 153–157.

4.        Blum, U., Rebbeck, J. Inhibition and recovery of cucumber roots given multiple treatments of ferulic acid in nutrient culture // Journal of Chemical Ecology. 1989. Vol. 15, No. 3. P. 917–928.
doi:10.1007/BF01015187

5.        Kuiters, A. T. Effects of phenolic acids on germination and growth of herbaceous woodland plants // Journal of Chemical Ecology. 1989. Vol. 15, No. 2. P. 467–479.
doi:10.1007/BF01014693

6.        Feng, L., Wang, L., Zhao, Y., Song, B. Effects of substituted anilines and phenols on root elongation of cabbage seed // Chemosphere. 1996. Vol. 32, No. 8. P. 1575–1583.

7.        Henner, P., Schiavon, M., Druelle, V., Lichtfouse, L. Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. // Organic Geochemistry. 1999. Vol 30, No. 8. P. 936–969.

8.        Wang, X., Yu, J., Wang, Y, Wang, L. Mechanism-based quantitative structure-activity relationships for inhibition of substituted phenols on germination rate of Cucumis sativus // Chemosphere. 2002. Vol. 46, No. 2. P. 241–250.

9.        Carballeria, A. Phenolic inhibitors in Erica australis L. and in associated soil // Journal of Chemical Ecology.1980. Vol. 6, P. 593–596.
doi:10.1007/BF00987671

10.     Chaves, N., Escudero, J. C. Allelopathic effect of Cistus ladanifer on seed germination // Functional Ecology. 1997. Vol. 11, No. 4. P. 432–440.
doi:10.1046/j.1365-2435.1997.00107.x

11.     Põllumaa, L., Maloveryan, A., Trapido, M., Sillak, H., Kahru, A. Study of the Environmental Hazard Caused by the Oil-Shale Industry Solid Waste // ATLA. 2001. Vol. 29, No. 3. P. 259–267.

12.     Orupõld, K., Tenno, T., Henrysson, T. Biological Treatment by Lagooning of Oil Shale Semicoke Ash Heaps Leachate Containing Phenolic Compounds // Water Research. 2000. Vol. 34, No. 18. P. 4389–4396.

13.     Otsa, E., Tang, H. The determining of environmental hazard of semi-coke. The report of the Estonian Environmental Research Centre.-Tallinn, 2003 [in Estonian, summary in English].

14.     Maves Ltd. Dry sedimentation of oil shale semi-coke and production of recultiva­tion substance from it. Assessment of the effect on the environment. Aruande projekt Maves AS (Draft report of Maves Ltd). – Tallinn, 2001 [in Estonian].

15.     Kahru, A., Kurvet, M., Kurvet, I. Study of the toxicological impact of different components of ash-heap water (sulphur rich phenolic leachate) using lumine­scent bacteria as test organisms // Oil Shale. 1997. Vol.14, No. 4 Special. P. 469–475.

16.     Ungar, I . A. Effect of salinity on seed germination, growth and ion accumula­tion of Atriplex patula (Chenopodiaceae) // Am. J. Bot. 1996. Vol. 83, No. 5. P. 604–607.
doi:10.2307/2445919

17.     Kahn, M. A., Ungar, I. A. The effect of salinity on the growth, water status and ion content of a leaf succulent perennial halophyte Sueda fruticosa (L.) Forssk. // Journal of Arid Environments. 2000. Vol. 45, No. 1. P. 73–84.
doi:10.1006/jare.1999.0617

18.     Prado, F. E., Boero, C., Gallardo, M., Gonzalez, J. A. Effect of NaCl on germination and soluble sugar content in Chenopodium quinoa Willd..seeds // Bot. Bull. Acad. Sin. 2000. Vol. 41, No. 1. P. 27–34.

19.     Hayward, H. E., Bernstein, L. Plant growth relationship on salt –affected soils // Botanical Review. 1958. Vol. 24, P. 584–635.

20.     Treshow, M. Mineral toxicity // Environment and plant response/ New York.: McGraw-Hill, 1970. P. 222–236.

21.     RabotnovT. A. Grassland Ecology (Работнов, Т. А. Луговедение) – Moscow 1974 [in Russian].

22.     International Rules for Seed Testing, Rules 1996 – International Seed Testing Association, Zurich, 1996.

23.     American Public Health Association, Standard methods for the examination of water and wastewater, Washington D.C., 1986.

24.     Orupõld, K., Raave, H. Phytotoxicity of oil shale semi-coke and its constituents // Life Sciences 2004. Book of abstracts / 9th International conference on life sciences of Slovenia and 1st international congress of toxicology in Slovenia. 2004. P. 236.

25.     Turbas, E. Chemical amelioration of soil – Taimede toitumise ja väetamise käsiraamat (Plant nutrition and fertilization handbook), Tallinn, 1996. P. 67–101 [in Estonian].

26.     U.S. Salinity Laboratory Staff. Saturated soil paste. Diagnosis and improvement of saline and alkaline soils // Agronomy Handbook 60, USDA, Washington, D.C. 1954

27.     Patrick, Z. A., Toussoun, T. A., Snyder, W. C. Phytotoxic substances in arable soils associated with decomposition of plant residues // Phytopathology 1963. Vol. 53, P. 152–161.

28.    Mengel, K., Kirkby, E. A. Principles of Plant Nutrition. – International Potash Institute, Bern, 1987.

29.    Brady, N. C. The nature and properties of soils (10th Edition), Macmillan Publishing Company, UK, 1990.

30.     Prado, F. E., Gonzales, J. A., Gallaro, M., Moris, M., Boero, C., Kortsarz, A. Changes in soluble carbohydrates and invertase activity in Chenopodium quinoa (”quinoa”) developed for saline stress during germination // Cur. Top. Phyto­chem. 1995. Vol. 14, P. 1–5.

31.    White, P. J., Broadley, M. R. Calcium in Plants // Annals of Botany. 2003. Vol. 92, No. 4. P. 487–511.
doi:10.1093/aob/mcg164