KINETICS OF CO-PYROLYSIS OF TARFAYA (MOROCCO) OIL SHALE WITH HIGH-DENSITY POLYETHYLENE
A. ABOULKAS(a),
K. EL HARFI (a), A. EL BOUADILI(b),
M. BENCHANAA(a), A. MOKHLISSE(a), A. OUTZOURIT(c)
(a) Laboratoire de Chimie Physique, Departement de chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390, 40001 Marrakech, Maroc
(b) Laboratoire de Chimie Organique et Analytique, Departement de chimie, Faculté des Sciences et Techniques de Béni-Mellal, Université Cadi Ayyad, BP 523, 23000 Béni-Mellal, Maroc
(c) Laboratoire de Physique des Solides et des Couches Minces, Faculté des Sciences de Marrakech, Semlalia BP S 2390, 40001 Maroc
Pyrolysis kinetics of oil shale mixed with high-density polyethylene (HDPE) was investigated using a thermogravimetric analysis (TGA) system at various heating rates of 2, 10, 20 and 50 K/min in the temperature range of 300-1273 K in the nitrogen atmosphere. Kissinger-Akahira-Sunose, Friedman, Flynn-Wall-Ozawa and Coats–Redfern methods have been used to determine activation energies of materials degradation. The analysis of the process mechanism by Criado and Coats-Redfern methods showed the following: the mechanism of thermal degradation process of HDPE is describable by the “Contracting cylinder” model (R2 mechanism); and the most probable model for the pyrolysis process of oil shale kerogen is the diffusion model (D4 mechanism), while the mixture degrades following the kinetic model of D4. It has been found that during thermal decomposition of oil shale/HDPE mixture no significant interaction of solid-phase components had taken place under the experimental conditions investigated.
REFERENCES
1.
Yusaku Sakata, Y.,
Uddin, M. A, Muto, A. Degradation of polyethylene and polypropylene into
fuel oil by using solid acid and non-acid catalysts // J. Anal. Appl. Pyrol.
1999. Vol. 51, No. 1–2. P. 135–155.
doi:10.1016/S0165-2370(99)00013-3
2.
Kaminsky, W.,
Predel, M., Sadiki,
A. Feedstock recycling of polymers by pyrolysis
in a fluidised
bed // Polym.
Degrad. Stab. 2004. Vol. 85, No. 3. P. 1045–1050.
doi:10.1016/j.polymdegradstab.2003.05.002
3.
Williams, E. A,
Williams, P. T. Analysis of products derived from the fast pyrolysis of plastic waste
// J. Anal. Appl. Pyrol. 1997. Vol. 40–41. P. 347–363.
doi:10.1016/S0165-2370(97)00048-X
4.
Tillman, D. A.,
Rossi, A. J., Vick, K. M. Incineration of municipal and hazardous
solid wastes. New York: Academic Press, 1989.
5.
Liu, Z.,
Zondlo, J. W., Dadyburjor, D. B. Tire liquefaction and its
effect on coal liquefaction // Energy and Fuels. 1994. Vol. 8, No. 3. P.
607-612.
doi:10.1021/ef00045a015
6.
Sakurovs, R. Interactions between
coking coals and plastics during co-pyrolysis // Fuel. 2003. Vol. 82, No.15-17.
P. 1911-1916.
7.
Horvat, N.,
Flora, T. T. Ng. Tertiary polymer recycling: study of polyethylene
thermolysis as a first step to synthetic diesel fuel // Fuel. 1999. Vol. 78,
No. 4. P. 459–470.
8.
Uddin, A.,
Koizumi, K., Murata, K., Sakata, Y. Thermal and catalytic
degradation of structurally different types of polyethylene into fuel oil //
Polym. Degrad. Stab. 1999. Vol. 56, No. 1. P. 37–44.
9.
Uzumkesici, E. S.,
Casal-Banciella, M. D., McRae, C., Snape, C. E.,
Taylor, D.
Co-processing of single plastic waste streams in low temperature carbonization
// Fuel. 1999. Vol. 78, No.14. P. 1697–1702.
10.
Mastral, A. M.,
Callen, M. S., Garcia, T., Navarro, M. V. Improvement of liquids
from coal–tire co-thermolysis. Characterization of the obtained oils //
Fuel Process. Technol. 2000. Vol. 64, No.1–3. P. 135–140.
doi:10.1016/S0378-3820(99)00127-7
11.
Ballice, L. Classification of volatile
products evolved from the temperature-programmed co-pyrolysis of Turkish oil
shales with atactic polypropylene (APP) // Energy and Fuels. 2001. Vol. 15, No.
3. 659–665.
doi:10.1021/ef0002041
12.
Ballice, L.,
Yüksel, M., Sağlam, M., Reimert, R., Schulz, H. Classification of volatile
products evolved during temperature-programmed co-pyrolysis of Turkish oil
shales with low density polyethylene // Fuel. 1998. Vol. 77, No. 13. P.
1431–1441.
13.
Tiikma, L.,
Luik, H., Pryadka, N. Co-pyrolysis of Estonian shales with low-density
polyethylene // Oil Shale. 2004. Vol. 21, No. 4. P. 75–85.
14.
Gersten, J.,
Fainberg, V., Garbar, A., Hetsroni, A., Shindler, Y. Utilization of waste
polymers through one-stage low-temperature pyrolysis with oil shale // Fuel.
1999. Vol. 78, No. 8. P. 987–990.
15.
Gersten, J.,
Fainberg, V., Hetsroni, A., Shindler, Y. Kinetic study of the
thermal decomposition of polypropylene, oil shale, and their mixture // Fuel.
2000. Vol. 79, No. 13. P. 1679–1686.
16. El
Harfi, K., Mokhlisse, A., Ben Chanâa, M.
Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale
// J. Anal. Appl. Pyrol. 1999. Vol. 48, No. 2. P. 65–76.
doi:10.1016/S0165-2370(98)00108-9
17.
El Harfi, K., Bennouna, C.,
Mokhlisse, A., Ben Chanâa, M., Lemée, L., Joffre, J.,
Ambles, A. Supercritical fluid extraction of Moroccan (Timahdit) oil shale
with water //
J. Anal.
Appl.
Pyrol.
1999. Vol.
50, No. 2. P.
163–174.
doi:10.1016/S0165-2370(99)00028-5
18.
El harfi, K.,
Mokhlisse, A., Ben Chanâa, M., Outzourhit, A. Pyrolysis of the Moroccan
(Tarfaya) oil shales under microwave irradiation // Fuel. 2000. Vol. 79, No. 7.
P. 733–742.
19.
El Harfi, K., Mokhlisse, A., Ben
Chanâa, M. Yields and
composition of oil obtained by isothermal pyrolysis of the Moroccan (Tarfaya) oil
shales with steam or nitrogen as carrier gas // J. Anal.
Appl. Pyrol. 2000. Vol. 56, No. 2. P. 207–218.
doi:10.1016/S0165-2370(00)00095-4
20.
Bekri, O.,
Ziyad, M.
Synthesis of oil Shale R&D Activities in Morocco, Proceedings of the 1991
Eastern Oil Shale Symposium, Lexington, Kentucky, 1991.
21.
Nazzal, J. M. Gas
evolution from the pyrolysis of Jordan oil shale in a fixed-bed reactor //
J. Therm. Anal. Cal. 2001. Vol. 65, No. 3. P. 847–857.
doi:10.1023/A:1011936401407
22.
Kissinger, H. E. Reaction kinetics in
differential thermal analysis // Anal. Chem. 1957. Vol. 29, No. 11. P.
1702–1706.
doi:10.1021/ac60131a045
23.
Akahira, T.,
Sunose, T. Title ?? // Res. Report CHIBA Inst. Technol.
1971. Vol. 16, No. ?. P. 22-31.
24.
Coats, A. W.,
Redfern, J. P. Kinetic parameters from thermogravimetric data // Nature. 1964. Vol.
201. P. 68–69.
25.
Friedman, H., Kinetics of thermal
degradation of char-forming plastics from thermogravimetry. Application to a
phenolic plastic // J. Polym. Sci., Part C. 1964. Vol. 6, No. ?. P. 183–195.
26.
Flynn, J., Wall, L. A. quick, direct method
for the determination of activation energy from thermogravimetric data //
Polym. Lett. 1966. Vol. 4, No. ?. P. 323–328.
27.
Ozawa, T. A new method of analyzing
thermogravimetric data // Bull. Chem. Soc. Jpn. 1965. Vol. 38, No. 11. P. 1881–1886.
doi:10.1246/bcsj.38.1881
28.
Doyle, C. Kinetic analysis of
thermogravimetric data // J. Appl. Polym. Sci. 1961. Vol. 5, No. 15. P.
285–292.
doi:10.1002/app.1961.070051506
29. Criado, J. M. Kinetic analysis of DTG data from master curves //
Termochim. Acta.1978. Vol. 24, No. 1. P. 186–189.
30. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Springer, Berlin, 1978. P. 142, 538
pp.
31. Durand, B.,
Monin, J. C. Elemental analysis of
kerogen. In: Durand, B. (Ed.), Kerogen. Technip, Paris, 1980. P. 301.
32.
Thakur, D. S., Nuttall, H. E. Kinetics of pyrolysis of Moroccan oil-shale by thermogravimetry
// Ind.
Eng. Chem. Res.
1987. Vol. 26, No. 7. P. 1351–1356.
doi:10.1021/ie00067a015
33.
Jaber, J. O.,
Probert, S. D. Non-isothermal thermogravimetry and decomposition kinetics of two
Jordanian oil shales under different processing conditions // Fuel Process.
Technol. 2000. Vol. 63, No. 1. P. 57–70
doi:10.1016/S0378-3820(99)00064-8
34.
Rajeshwar, K. The kinetics of the
thermal decomposition of green river oil-shale kerogen by non-isothermal
thermogravimetry // Thermochim. Acta 1981. Vol. 45, No. 3. P. 253–263.
doi:10.1016/0040-6031(81)85086-1
35.
Agudo, R.,
Olazar, M., Gaisan, B., Prieto, R., Bilbao, J. Kinetic study of
polyolefin pyrolysis in a conical spouted bed reactor // Ind. Eng. Chem. Res.
2002. Vol. 41, No. 18. P. 4559–4566.
doi:10.1021/ie0201260
36. Sorum, L., Gronli, M. G., Hustad, J. E. Pyrolysis characteristics
and kinetics of municipal solid wastes // Fuel. 2001. Vol. 80, No. 9. P.
1217–1227.
37.
Wu, C. H.,
Chang, C. Y., Hor, J. L., Shih, S. M.,
Chen, L. W., Chang, F. W. On the thermal treatment of plastic
mixtures of MSW: Pyrolysis kinetics // Waste Mgmt. 1993. Vol. 13, No. 3. P.
221–235.
38.
Torrente, M. C.,
Galan, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano
(Spain) // Fuel. 2001. Vol. 80, No 3. P 327–334.
doi:10.1016/S0016-2361(00)00101-0
39.
Sonibare, O. O.,
Ehinola, O. A., Egashira, R. Thermal and geochemical characterization
of Lokpanta oil shales, Nigeria // Energy Convers. Mgmt. 2005. Vol. 46, No.
15–16. P. 2335–2344.
doi:10.1016/j.enconman.2005.01.001
40.
Dogan, O. M,
Uysal, B. Z. Non-isothermal pyrolysis kinetics of three Turkish oil shales //
Fuel. 1996. Vol. 75, No. 12. P. 1424–1428.