KINETICS OF CO-PYROLYSIS OF TARFAYA (MOROCCO) OIL SHALE WITH HIGH-DENSITY POLYETHYLENE

(full text in pdf format)

 

A. ABOULKAS(a), K. EL HARFI (a), A. EL BOUADILI(b),
M. BENCHANAA(a), A. MOKHLISSE(a), A. OUTZOURIT(c)

 

(a) Laboratoire de Chimie Physique, Departement de chimie, Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390, 40001 Marrakech, Maroc

(b) Laboratoire de Chimie Organique et Analytique, Departement de chimie, Faculté des Sciences et Techniques de Béni-Mellal, Université Cadi Ayyad, BP 523, 23000 Béni-Mellal, Maroc

(c) Laboratoire de Physique des Solides et des Couches Minces, Faculté des Sciences de Marrakech, Semlalia BP S 2390, 40001 Maroc

 

 

Pyrolysis kinetics of oil shale mixed with high-density polyethylene (HDPE) was investigated using a thermogravimetric analysis (TGA) system at various heating rates of 2, 10, 20 and 50 K/min in the temperature range of 300-1273 K in the nitrogen atmosphere. Kissinger-Akahira-Sunose, Friedman, Flynn-Wall-Ozawa and Coats–Redfern methods have been used to determine activation energies of materials degradation. The analysis of the process mechanism by Criado and Coats-Redfern methods showed the following: the mechanism of thermal degradation process of HDPE is describable by the “Contracting cylinder” model (R2 mechanism); and the most probable model for the pyrolysis process of oil shale kerogen is the diffusion model (D4 mechanism), while the mixture degrades following the kinetic model of D4. It has been found that during thermal decomposition of oil shale/HDPE mixture no significant interaction of solid-phase components had taken place under the experimental conditions investigated.

 

 

REFERENCES

1.        Yusaku Sakata, Y., Uddin, M. A, Muto, A. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts // J. Anal. Appl. Pyrol. 1999. Vol. 51, No. 1–2. P. 135–155.
doi:10.1016/S0165-2370(99)00013-3

2.        Kaminsky, W., Predel, M., Sadiki, A. Feedstock recycling of polymers by pyrolysis in a fluidised bed // Polym. Degrad. Stab. 2004. Vol. 85, No. 3. P. 1045–1050.
doi:10.1016/j.polymdegradstab.2003.05.002

3.        Williams, E. A, Williams, P. T. Analysis of products derived from the fast pyrolysis of plastic waste // J. Anal. Appl. Pyrol. 1997. Vol. 40–41. P. 347–363.
doi:10.1016/S0165-2370(97)00048-X

4.        Tillman, D. A., Rossi, A. J., Vick, K. M. Incineration of municipal and hazardous solid wastes. New York: Academic Press, 1989.

5.        Liu, Z., Zondlo, J. W., Dadyburjor, D. B. Tire liquefaction and its effect on coal liquefaction // Energy and Fuels. 1994. Vol. 8, No. 3. P. 607-612.
doi:10.1021/ef00045a015

6.        Sakurovs, R. Interactions between coking coals and plastics during co-pyrolysis // Fuel. 2003. Vol. 82, No.15-17. P. 1911-1916.

7.        Horvat, N., Flora, T. T. Ng. Tertiary polymer recycling: study of polyethylene thermolysis as a first step to synthetic diesel fuel // Fuel. 1999. Vol. 78, No. 4. P. 459–470.

8.        Uddin, A., Koizumi, K., Murata, K., Sakata, Y. Thermal and catalytic degrada­tion of structurally different types of polyethylene into fuel oil // Polym. Degrad. Stab. 1999. Vol. 56, No. 1. P. 37–44.

9.        Uzumkesici, E. S., Casal-Banciella, M. D., McRae, C., Snape, C. E., Taylor, D. Co-processing of single plastic waste streams in low temperature carbonization // Fuel. 1999. Vol. 78, No.14. P. 1697–1702.

10.     Mastral, A. M., Callen, M. S., Garcia, T., Navarro, M. V. Improvement of liquids from coal–tire co-thermolysis. Characterization of the obtained oils // Fuel Process. Technol. 2000. Vol. 64, No.1–3. P. 135–140.
doi:10.1016/S0378-3820(99)00127-7

11.     Ballice, L. Classification of volatile products evolved from the temperature-programmed co-pyrolysis of Turkish oil shales with atactic polypropylene (APP) // Energy and Fuels. 2001. Vol. 15, No. 3. 659–665.
doi:10.1021/ef0002041

12.     Ballice, L., Yüksel, M., Sağlam, M., Reimert, R., Schulz, H. Classification of volatile products evolved during temperature-programmed co-pyrolysis of Turkish oil shales with low density polyethylene // Fuel. 1998. Vol. 77, No. 13. P. 1431–1441.

13.     Tiikma, L., Luik, H., Pryadka, N. Co-pyrolysis of Estonian shales with low-density polyethylene // Oil Shale. 2004. Vol. 21, No. 4. P. 75–85.

14.     Gersten, J., Fainberg, V., Garbar, A., Hetsroni, A., Shindler, Y. Utilization of waste polymers through one-stage low-temperature pyrolysis with oil shale // Fuel. 1999. Vol. 78, No. 8. P. 987–990.

15.     Gersten, J., Fainberg, V., Hetsroni, A., Shindler, Y. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture // Fuel. 2000. Vol. 79, No. 13. P. 1679–1686.

16.     El Harfi, K., Mokhlisse, A., Ben Chanâa, M. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale //  J. Anal. Appl. Pyrol. 1999. Vol. 48, No. 2. P. 65–76.
doi:10.1016/S0165-2370(98)00108-9

17.     El Harfi, K., Bennouna, C., Mokhlisse, A., Ben Chanâa, M., Lemée, L., Joffre, J., Ambles, A. Supercritical fluid extraction of Moroccan (Timahdit) oil shale with water  // J. Anal. Appl. Pyrol. 1999. Vol. 50, No. 2. P. 163–174.
doi:10.1016/S0165-2370(99)00028-5

18.     El harfi, K., Mokhlisse, A., Ben Chanâa, M., OutzourhitA. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation // Fuel. 2000. Vol. 79, No. 7. P. 733–742.

19.     El Harfi, K., Mokhlisse, A., Ben Chanâa, M. Yields and composition of oil obtained by isothermal pyrolysis of the Moroccan (Tarfaya) oil shales with steam or nitrogen as carrier gas // J. Anal. Appl. Pyrol. 2000. Vol. 56, No. 2. P. 207–218.
doi:10.1016/S0165-2370(00)00095-4

20.     Bekri, O., Ziyad, M. Synthesis of oil Shale R&D Activities in Morocco, Proceedings of the 1991 Eastern Oil Shale Symposium, Lexington, Kentucky, 1991.

21.     Nazzal, J. M. Gas evolution from the pyrolysis of Jordan oil shale in a fixed-bed reactor // J. Therm. Anal. Cal. 2001. Vol. 65, No. 3. P. 847–857.
doi:10.1023/A:1011936401407

22.     Kissinger, H. E. Reaction kinetics in differential thermal analysis // Anal. Chem. 1957. Vol. 29, No. 11. P. 1702–1706.
doi:10.1021/ac60131a045

23.     Akahira, T., Sunose, T. Title ?? // Res. Report CHIBA Inst. Technol. 1971. Vol. 16, No. ?. P. 22-31.

24.     Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data // Nature. 1964. Vol. 201. P. 68–69.

25.     Friedman, H., Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic // J. Polym. Sci., Part C. 1964. Vol. 6, No. ?. P. 183–195.

26.     Flynn, J., Wall, L. A. quick, direct method for the determination of activation energy from thermogravimetric data // Polym. Lett. 1966. Vol. 4, No. ?. P. 323–328.

27.     Ozawa, T. A new method of analyzing thermogravimetric data // Bull. Chem. Soc. Jpn. 1965. Vol. 38, No. 11. P. 1881–1886.
doi:10.1246/bcsj.38.1881

28.     Doyle, C. Kinetic analysis of thermogravimetric data // J. Appl. Polym. Sci. 1961. Vol. 5, No. 15. P. 285–292.
doi:10.1002/app.1961.070051506

29.     Criado, J. M. Kinetic analysis of DTG data from master curves // Termochim. Acta.1978. Vol. 24, No. 1. P. 186–189.

30.     Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Springer, Berlin, 1978. P. 142, 538 pp.

31.     Durand, B., Monin, J. C. Elemental analysis of kerogen. In: Durand, B. (Ed.), Kerogen. Technip, Paris, 1980. P. 301.

32.     Thakur, DS., Nuttall, HE. Kinetics of pyrolysis of Moroccan oil-shale by thermogravimetry // Ind. Eng. Chem. Res. 1987. Vol. 26, No. 7. P. 1351–1356.
doi:10.1021/ie00067a015

33.     Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decomposi­tion kinetics of two Jordanian oil shales under different processing conditions // Fuel Process. Technol. 2000. Vol. 63, No. 1. P. 57–70
doi:10.1016/S0378-3820(99)00064-8

34.     Rajeshwar, K. The kinetics of the thermal decomposition of green river oil-shale kerogen by non-isothermal thermogravimetry // Thermochim. Acta 1981. Vol. 45, No. 3. P. 253–263.
doi:10.1016/0040-6031(81)85086-1

35.     Agudo, R., Olazar, M., Gaisan, B., Prieto, R., Bilbao, J. Kinetic study of polyolefin pyrolysis in a conical spouted bed reactor // Ind. Eng. Chem. Res. 2002. Vol. 41, No. 18. P. 4559–4566.
doi:10.1021/ie0201260

36.     Sorum, L., Gronli, M. G., Hustad, J. E. Pyrolysis characteristics and kinetics of municipal solid wastes // Fuel. 2001. Vol. 80, No. 9. P. 1217–1227.

37.     Wu, C. H., Chang, C. Y., Hor, J. L., Shih, S. M., Chen, L. W., Chang, F. W. On the thermal treatment of plastic mixtures of MSW: Pyrolysis kinetics // Waste Mgmt. 1993. Vol. 13, No. 3. P. 221–235.

38.     Torrente, M. C., Galan, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain) // Fuel. 2001. Vol. 80, No 3. P 327–334.
doi:10.1016/S0016-2361(00)00101-0

39.     Sonibare, O. O., Ehinola, O. A., Egashira, R. Thermal and geochemical charac­teriza­tion of Lokpanta oil shales, Nigeria // Energy Convers. Mgmt. 2005. Vol. 46, No. 15–16. P. 2335–2344.
doi:10.1016/j.enconman.2005.01.001

40.     Dogan, O. M, Uysal, B. Z. Non-isothermal pyrolysis kinetics of three Turkish oil shales // Fuel. 1996. Vol. 75, No. 12. P. 1424–1428.