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Abstract. Evolution strategies are inspired in biology and form part of a larger research field
known as evolutionary algorithms. Those strategies perform a random search in the space of
admissible functions, aiming to optimize some given objective function. We show that simple
evolution strategies are a useful tool in optimal control, permitting one to obtain, in an efficient
way, good approximations to the solutions of some recent and challenging optimal control
problems.
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1. INTRODUCTION

Evolution strategies (ES) are algorithms inspired in biology, with publications
dating back to 1965 by separate authors H. P. Schwefel and I. Rechenberg
(cf. [1]). Evolution strategies form part of a larger area called evolutionary
algorithms that perform a random search in the space of solutions aiming to
optimize some objective function. It is common to use biological terms to describe
these algorithms. Here we make use of a simple ES algorithm known as the
(µ, λ)-ES method [1], where µ is the number of progenitors and λ is the number
of generated approximations, called offsprings. Progenitors are recombined and
mutated to produce, at each generation, λ offsprings with innovations sampled from
a multivariate normal distribution. The variance can also be subject to mutation,
meaning that it is part of the genetic code of the population. Every solution is
evaluated by the objective function and one or some of them are selected to be
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the next progenitors, allowing the search to go on, stopping when some criteria
are met. In this paper we use a recent convergence result proved by A. Auger in
2005 [2]. The log-linear convergence is achieved for the optimization problems we
investigate here, and depends on the number λ of search points.

Usually optimal control problems are approximately solved by means of
numerical techniques based on the gradient vector or the Hessian matrix [3].
Compared with these techniques, ES provide easier computer coding because
they only use measures from a discretized objective function. The first work
combining these two research fields (ES and optimal control) was published by
D. S. Szarkowicz in 1995 [4], where the Monte Carlo method (an algorithm
with the same principle as ES) is used to find an approximation to the classical
brachistochrone problem. In the late 1990s, B. Porter and his collaborators
showed how ES can be used to synthesize optimal control policies that minimize
manufacturing costs while meeting production schedules [5]. The use of ES in
control has grown during the last ten years, and is today an active and promising
research area. Recent results, showing the power of ES in control, include
Hamiltonian synthesis [6], robust stabilization [7], and optimization [8]. Very
recently it has also been shown that the theory of optimal control provides insights
that permit developing more effective ES algorithms [9].

In this work we are interested in two classical problems of the calculus
of variations: the 1696 brachistochrone problem and the 1687 Newton’s aero-
dynamical problem of minimal resistance (see, e.g., [10]). These two problems,
although classical, are a source of strong current research on optimal control and
provide many interesting and challenging open questions [11,12]. We focus our
study on the brachistochrone problem with restrictions proposed by A. G. Ramm
in 1999 [13], for which some questions still remain open (see some conjectures
in [13]); and on a generalized aerodynamical minimum resistance problem with
non-parallel flux of particles, recently studied by Plakhov and Torres [11,14]. Our
results show the effectiveness of ES algorithms for this class of problems and
motivate further work in this direction in order to find the (yet) unknown solutions
to some related problems, as the ones formulated in [15].

2. PROBLEMS AND SOLUTIONS

All the problems we are interested in share the same formulation:

minT [y(·)] =
∫ xf

x0

L(x, y(x), y′(x))dx

on some specified class of functions, where y(·) must satisfy some given boundary
conditions (x0, y0) and (xf , yf ).

We consider a simplified (µ, λ)-ES algorithm where we put µ = 1, meaning
that on each generation we keep only one progenitor to generate other candidate
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solutions, and set λ = 10 meaning we generate 10 candidate solutions called
offsprings (this value appears as a reference value in the literature). Also, the
algorithm uses an individual and constant σ2 variance on each coordinate, which is
fixed to a small value related to the desired precision. The number of iterations was
100 000 and σ2 was tuned for each problem. We got convergence in useful time.
The simplified (1, 10)-ES algorithm goes as follows:
1. set an equal-spaced sequence of n points {x0, . . . , xi, . . . , xf}, where i =

1, . . . , n− 2; x0 and xf are kept fixed (given boundary conditions);
2. generate a randomly piecewise linear function y(·) that approximates the

solution, defined by a vector y = {y0, . . . , yi, . . . , yf}, i = 1, . . . , n − 2;
transform y in order to satisfy the boundary conditions y0 and yf and the
specific problem restrictions on y, y′ or y′′;

3. perform the following steps a fixed number N of times:
(a) based on y find λ new candidate solutions Y c, c = 1, . . . , λ, where each

new candidate is produced by Y c = y + N(0, σ2), where N(0, σ2) is a
vector of random perturbations from a normal distribution; transform each
Y c to obey boundary conditions y0 and yf and other problem restrictions
on y, y′ or y′′;

(b) determine T c := T [Y c], c = 1, . . . , λ, and choose the new y := Y c as the
one with minimum T c.

In each iteration the best solution must be kept because (µ, λ)-ES algorithms do
not keep the best solution from iteration to iteration.

The next subsections contain a description of the studied problems, respective
solutions, and the approximations found by the described algorithm.

2.1. The classical brachistochrone problem, 1696

Problem statement. The brachistochrone problem consists in determining the
curve of minimum time when a particle starting at a point A = (x0, y0) of a vertical
plane goes to a point B = (x1, y1) in the same plane under the action of the
gravity force and with no initial velocity. According to the energy conservation
law 1

2mv2 + mgy = mgy0, one easily deduces that the time a particle needs to
reach B starting from the point A along curve y(·) is given by

T [y(·)] =
1√
2g

∫ x1

x0

√
1 + (y′)2

y0 − y
dx, (1)

where y(x0) = y0, y(x1) = y1, and y ∈ C2(x0, x1). The minimum to (1) is given
by the famous Cycloid

γ :





x = x0 +
a

2
(θ − sin θ),

y = y0 − a

2
(1− cos θ),
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Fig. 1. The brachistochrone problem and approximate solution. (a) The continuous line with
dots is the piecewise approximate solution, the dashed line the optimal solution. (b) Logarithm
of iterations vs. logarithmic distance to the minimum value of (1).

with θ0 ≤ θ ≤ θ1, θ0 and θ1 being the values of θ in the starting and ending points
(x0, y0) and (x1, y1). The minimum time is given by T =

√
a/(2g)θ1, where

parameters a and θ1 can be determined numerically from boundary conditions.

Results and implementation details. Consider the following three curves and
the time a particle needs to go from A to B through them:
Tb: the brachistochrone for the problem with (x0, x1) = (0, 10), (y0, y1) = (10, 0)

has parameters a ' 5.72917 and θ1 = 2.41201; the time is Tb ' 1.84421;
Tes: a piecewise linear function with 20 segments shown in Fig. 1a was found by

ES; the time is Tes = 1.85013;
To: a piecewise linear function with 20 segments defined over the brachistochrone;

the time is To = 1.85075.
From Fig. 1a one can see that the piecewise linear solution is made of points that

are not over the brachistochrone, because that is not the best solution for piecewise
functions. We use σ = 0.01 (see Appendix for cpu-times). Figure 1b shows that a
little more than 10 000 iterations are needed to reach a good solution for the 20 line
segment problem.

2.2. The brachistochrone problem with restrictions, 1999

Problem statement. Ramm [13] presents a conjecture about a brachistochrone
problem over the set S of convex functions y (with y′′(x) ≥ 0 a.e.) and 0 ≤ y(x) ≤
y0(x), where y0 is a straight line between A = (0, 1) and B = (b, 0), b > 0. Up to
a constant, the functional to be minimized is formulated as in (1):

T [y(·)] =
∫ b

0

√
1 + (y′)2√
1− y

dx .
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Let P be the line connecting AO and OB, where O = (0, 0); Pbr be the polygonal
line connecting AC and CB, C = (π/2, 0). Then, T0 := T (y0) = 2

√
1 + b2,

TP := T (P ) = 2 + b, T (Pbr) =
√

4 + π2 + b − π/2. Let the brachistochrone be
ybr. The following inequalities, for each y ∈ S, hold [13]:
1. if 0 < b < 4/3, then T (ybr) ≤ T (y) < TP ;
2. if 4/3 ≤ b ≤ π/2, then T (ybr) ≤ T (y) ≤ T0;
3. if b > π/2, then T (Pbr) < T (y) ≤ T0.

The classical brachistochrone solution holds for cases 1 and 2 only. For the
third case, Ramm has conjectured that the minimum time curve is composed by the
brachistochrone between (0, 1) and (π/2, 0) and then by the horizontal segment
between (π/2, 0) and (xf , 0).

Results and implementation details. We study the problem with b = 2. Our
results give force to Ramm’s conjecture mentioned above for case 3. We compare
three descendant times:
Tbr: the conjectured solution in continuous time takes Tbr =

√
α/9.8θf+

(b− π/2)/
√

2 ∗ 9.8 = 0.8066;
Tes: the 20 segment piecewise linear solution found by ES needs Tes = 0.8107;
To: the 20 segment piecewise linear solution with points over the conjectured

solution needs To = 0.8111.
Previous values and Fig. 2 permit us to make conclusions similar to the ones

obtained for the pure brachistochrone problem (§2.1). We use σ = 0.001 (see
Appendix for cpu-times). Figure 2b shows that less than 10 000 iterations are
needed to reach a good solution.

Fig. 2. The solution and approximate solution conjectured by Ramm [13]. (a) The continuous
line with dots is the obtained approximated solution, the dashed line Ramm’s conjectured
solution. (b) Logarithm of iterations vs. logarithmic distance to minimum integral value.

303



2.3. Newton’s minimum resistance, 1687

Problem statement. Newton’s aerodynamical problem consists in determining
the minimum resistance profile of a body of revolution moving at constant speed
in a rare medium of equally spaced particles that do not interact with each other.
Collisions with the body are assumed to be perfectly elastic. Formulation of this
problem is: minimize

R[y(·)] =
∫ r

0

x

1 + ẏ(x)2
dx,

where 0 ≤ x ≤ r, y(0) = 0, y(r) = H , and y′(x) ≥ 0. The solution is given in
parametric form:

x(u) = 2λu, y(u) = 0, for u ∈ [0, 1];

x(u) =
λ

2

(
1
u

+ 2u + u3

)
, y(u) =

λ

2

(
− log u + u2 +

3
4
u4

)
− 7λ

8
,

for u ∈ [1, umax].

Parameters λ and umax are obtained by solving x(umax) = r and y(umax) = H .

Results and implementations details. For H = 2 we have:
Rnewton: the exact solution has resistance Rnewton = 0.0802;
Res: the 20 segment piecewise linear solution found by ES has Res = 0.0809;
Ro: the 20 segment piecewise linear solution with points over the exact

solution leads to Ro = 0.0808.
Newton’s problem turns out to be more complex than previously studied

brachistochrone problems. The trial-and-error method was needed in order to find
a useful σ2 value. For example, using σ = 0.001, our algorithm seems to stop in

Fig. 3. Optimal solution to Newton’s problem and approximation. (a) The continuous line
with dots is the obtained approximation, the dashed line the optimal solution. (b) Logarithm of
iterations vs. logarithmic distance to minimum integral value.
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some local minimum. In Fig. 3 an approximate solution with σ = 0.01 is shown.
We have also observed that changing the starting point causes minor differences in
the approximate solution. The achieved ES solution should be better since Ro is
better than Res. One possible explanation for this fact is that we are using 20 xi

fixed points and the optimal solution has a break point at x = 2λ. We use σ = 0.01
(see Appendix for cpu-times). Figure 3b shows that less than 1000 iterations are
needed to reach a good solution.

2.4. Newton’s problem with temperature, 2005

Problem statement. The problem consists in determining the body of
minimum resistance, moving with constant velocity in a rarefied medium of
chaotically moving particles with velocity distributions assumed to be radially
symmetric in the Euclidean spaceRd. This problem was posed and solved in 2005–
2006 by Plakhov and Torres [11,14]. It turns out that the two-dimensional problem
(d = 2) is richer than the three-dimensional one, having five possible types of
solutions when the velocity of the moving body is not “too slow” or “too fast”
compared with the velocity of particles.

The pressure at the body surface is described by two functions: in the front
of the body the flux of particles causes resistance, in the back the flux causes
acceleration. We consider functions found in [14], where the two flux functions
p+ and p− are given by p+(u) = 1

1+u2 + 0.5 and p−(u) = 0.5
1+u2 − 0.5. We also

consider a body of fixed radius 1. The optimal solution depends on the body height
h: the front solution is denoted by fh+ , which depends on some appropriate front
height h+; and the solution for the rear is denoted by fh− , depending on some
appropriate height h−. Optimal solutions fh+ and fh− are obtained:

fh+ = min
fh

R+(fh) =
∫ 1

0
p+(f ′h(t))dt

and

fh− = min
fh

R−(fh) =
∫ 1

0
p−(f ′h(t))dt.

Then, the body shape is determined by minimizing

R(h) = min
h++h−=h

(R+(f ′h+
) + R−(f ′h−)) .

The solution can be of five types (d = 2). From functions p+ and p− one can
determine constants u0

+, u∗, u0−, and h−. Then, depending on the choice of the
height h, the theory developed in [11,14] asserts that the minimum resistance body
is:
1. a trapezium if 0 < h < u0

+;
2. an isosceles triangle if u0

+ ≤ h ≤ u∗;
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Fig. 4. 2D Newton-type problem with temperature. (a) The continuous line with dots is
the obtained approximation, the dashed line the optimum. (b) Logarithm of iterations vs.
logarithmic distance to minimum integral value.

3. the union of a triangle and a trapezium if u∗ < h < u∗ + u0−;
4. if h ≥ u∗ + u0−, the solution depends on h− and can be a union of two isosceles

triangles with a common base with heights h+ and h− or the union of two
isosceles triangles and a trapezium;

5. a combination of a triangle, trapezium, and other triangle, depending on some
other particular conditions (cf. [11]).

Results and implementation details. We illustrate the use of ES algorithms
for h = 2. Following section 4.1 of [11], we have u∗ ' 1.60847 and u0− = 1, so
this is case 3 above: u∗ < h < u∗ + u0−. The resistance values are:
Rpd: the exact solution has resistance Rpd = 0.681;
Res: the 31 segment piecewise linear solution found by ES has Res = 0.685.

Similar to the classical problem of Newton (§2.3), some hand search for the
parameter σ2 was needed. We use σ = 0.01 and piecewise approximation with 31
equal-spaced segments in xx (see Appendix for cpu-times). Figure 4b shows that
only a little more than 1000 iterations are needed to reach a good solution.

3. CONCLUSIONS AND FUTURE DIRECTIONS

Our main conclusion is that a simple ES algorithm can be effectively used as
a tool to find approximate solutions to some optimization problems. In the present
work we report simulations that motivate the use of ES algorithms to find good
approximate solutions to brachistochrone-type and Newton-type problems. We
illustrate our approach with the classical problems and with some recent and still
challenging problems. More precisely, we considered the 1696 brachistochrone

306



problem (B); the 1687 Newton’s aerodynamical problem of minimal resistance (N);
a recent brachistochrone problem with restrictions (R) studied by Ramm in 1999,
and where some open questions still remain [13]; and finally a generalized
aerodynamical minimum resistance problem with non-parallel flux of particles (P),
recently studied by Plakhov and Torres [11,14] and which gives rise to other
interesting questions [15].

We argue that the approximated solutions we have found by the ES algorithm
are of good quality. We give two reasons. First, for the brachistochrone and Ramm
problems the functional value for the ES approximation was better than the linear
interpolation over the exact solution, showing that the ES algorithm is capable of
good precision. The second reason is the low relative error r(TY , Ty) between the
functional over the exact solution Ty and the approximate solution TY , as shown in
Table 1.

In Table 1, yk are points over the exact solution of the problem and Yk are
points from the piecewise approximation. We note that max |Yk − yk| need not
be zero because the best continuous solution and the best linear solution cannot be
superposed.

Evolution strategies algorithms use computers in an intensive way. For
brachistochrone-type and Newton-type problems, and nowadays computing power,
few minutes of simulation (or less) were enough on an interpreted language (see
Appendix).

More research is needed to tune algorithms of this kind and obtain more
accurate solutions. Special attention must be paid to qualifying an obtained ES
approximation: Is it a minimum of the energy function? Is it local or global?
Another question is computer efficiency. Waiting for few minutes in recent
computers is not bad, but can we improve the running times?

Concerning the accuracy, several new ES algorithms have been proposed.
These algorithms can tune σ values and use generated second-order information
that can influence the precision and time needed. Also the use of random xx points
(besides y piecewise linear solutions) should be investigated.

We believe that the simplicity of the technique considered in the present work
can help in the search of solutions to some open problems in optimal control. This
is under investigation and will be addressed elsewhere.

Table 1. Performance achieved for problems (B), (R), (N), and (P)

Problem max |Yk − yk| r(TY , Ty) Problem max |Yk − yk| r(TY , Ty)

(B) 0.15 0.001 (N) 0.08 0.01
(R) 0.09 0.003 (P) 0.07 0.001
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APPENDIX

HARDWARE AND SOFTWARE

The code developed for this work can be freely obtained from the first author’s
web page, at http://www.mat.ua.pt/jpedro/evolution/.

In most of our investigations few minutes were sufficient for getting a good
approximation for all the considered problems, even using a code style prone to
humans rather than machines (code was done concerning clearness of concepts
rather than the execution speed). Our simulations used a Pentium 4 CPU 3 GHz,
running Debian Linux http://www.debian.org. The language was R [16],
chosen because it is a fast interpreted language, numerically oriented to statistics
and freely available.

The cpu-times in Table 2 were obtained with the command

time R CMD BATCH problem.R

where time keeps track of the cpu used and R calls the interpreter. The times are
rounded and the last column estimates the time for the first good solution.

We note that the per iteration “step” was σ = 0.001 in the brachistochrone
(-type) problems and σ = 0.01 for the Newton(-type) problems. Using a compiled
language like C, one can certainly improve times by several orders of magnitude.

Table 2. Cpu-times obtained

Problem Section 100 000 iterations “Good solution” at

Brachistochrone §2.1 10 min 1 min
Ramm conjecture §2.2 10 min 1 min
Newton §2.3 9 min 10 s
Plakhov and Torres §2.4 14 min 10 s
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3. Arnăutu, V. and Neittaanmäki, P. Optimal Control from Theory to Computer Programs.
Kluwer Acad. Publ., Dordrecht, 2003.

4. Szarkowicz, D. S. Investigating the brachistochrone with multistage Monte Carlo method.
Int. J. Systems Sci., 1995, 26, 233–243.

5. Porter, B. and Merzougui, T. Evolutionary synthesis of optimal control policies for
manufacturing systems. In Emerging Technologies and Factory Automation Proceed-
ings, 1997. ETFA ’97, 6th International Conference on 9–12 Sept. 1997, 304–309.

6. Raimúndez Álvarez, J. C. Port controller Hamiltonian synthesis using evolution strategies.
In Dynamics, Bifurcations, and Control (Kloster Irsee, 2001). Lecture Notes in
Control and Inform. Sci., 2002, 273, 159–172.

7. Raimúndez, C. Robust stabilization for the nonlinear benchmark problem (TORA) using
neural nets and evolution strategies. In Nonlinear Control in the Year 2000, Vol. 2
(Paris). Lecture Notes in Control and Inform. Sci., 2001, 259, 301–313.

8. Beielstein, T., Ewald, C.-P. and Markon, S. Optimal elevator group control by evolution
strategies. Lecture Notes Comput. Sci., 2003, 1963–1974.

9. Aktan, B., Greenwood, G. W. and Shor, M. H. Using optimal control principles to
adapt evolution strategies. In 2006 IEEE Congress on Evolutionary Computation,
Vancouver, Canada, July 16–21. 2006, 291–296.

10. Tikhomirov, V. M. Stories About Maxima and Minima. Amer. Math. Soc., Providence,
RI, 1990 (translated from the 1986 Russian original by Abe Shenitzer).

11. Plakhov, A. Yu. and Torres, D. F. M. Newton’s aerodynamic problem in media of
chaotically moving particles. Sb. Math., 2005, 196, 885–933.

12. Sussmann, H. J. and Willems, J. C. The brachistochrone problem and modern control
theory. In Contemporary Trends in Nonlinear Geometric Control Theory and Its
Applications (México City, 2000). World Sci. Publ., River Edge, NJ, 2002, 113–166.

13. Ramm, A. G. Inequalities for brachistochrone. Math. Inequal. Appl., 1999, 2, 135–140.
14. Torres, D. F. M. and Plakhov, A. Yu. Optimal control of Newton-type problems of minimal

resistance. Rend. Semin. Mat. Univ. Politec. Torino, 2006, 64, 79–95.
15. Plakhov, A. Yu. Billiards in unbounded domains that reverse the direction of motion of

the particles. Uspekhi Mat. Nauk, 2006, 61, 183–184.
16. R (Development Core Team). R: a Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2005. ISBN 3-900051-07-0,
http://www.R-project.org.

Evolutsioonistrateegiad optimeerimisprobleemides

Pedro A. F. Cruz ja Delfim F. M. Torres

Evolutsioonistrateegiad on osa laiemast uurimisvaldkonnast, mis on tuntud
evolutsiooniliste algoritmide nime all. Nimetatud strateegiad teostavad juhuslikku
otsingut lubatavate funktsioonide ruumis eesmärgiga optimeerida mõnd etteantud
sihifunktsiooni. On näidatud, et lihtsad evolutsioonistrateegiad on kasulikud
mitmetes optimaaljuhtimise keerukates probleemides, võimaldades efektiivselt
leida häid lahendite aproksimatsioone.
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