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Abstract. A numerical method for solving nonlinear Fredholm integral equations, based on
the Haar wavelet approach, is presented. Its efficiency is tested by solving four examples for
which the exact solution is known. This allows us to estimate the exactness of the obtained
numerical results. High accuracy of the results even in the case of a small number of grid
points is observed.
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1. INTRODUCTION

Many problems from physics and other disciplines lead to linear or nonlinear
integral equations. Several methods have been proposed for numerical solution
of these equations (see, e.g., [1]). One of the favourite techniques is the colloca-
tion method; of numerous papers about this approach we would cite here the
papers [2−4].

Since 1991 the wavelet method has been applied to solving integral equations.
Various wavelet bases have been employed. In addition to the conventional
Daubechies wavelets [5], the Hermite-type trigonometric wavelets [6], linear
B-splines [7], Walsh functions [8], Cohen [9] and Albert [10] wavelets have
been used. These solutions are often quite complicated, therefore simplifications
are welcome. One possibility is to make use of the Haar wavelets, which are
mathematically the simplest wavelets. For linear integral equations this approach
has been realized in [11,12].

In the present paper the Haar wavelet method is applied to solving linear
Fredholm, Volterra, and integro-differential equations. Weakly singular integral
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equations are also discussed. The paper is an extension of [11]. For solving
nonlinear integral equations an iterative method, for which the number of
collocation points is doubled at each iteration, is proposed. The method is tested
with the help of four numerical examples the exact solution of which is known.

In this paper only the Fredholm integral equations of second kind are
considered, but as it follows from [11], this approach can be easily applied also
to solving other types of integral equations.

2. HAAR WAVELETS

The Haar wavelet family is

hi(t) =





1 for t ∈ [t(1), t(2)),
−1 for t ∈ [t(2), t(3)),
0 elsewhere.

(1)

Here the notations

t(1) =
k

m
, t(2) =

k + 0.5
m

, t(3) =
k + 1

m
(2)

are introduced. The integer m = 2j , j = 0, 1, ..., J , indicates the level of the
wavelet; k = 0, 1, ..., m− 1 is the translation parameter. The integer J determines
the maximal level of resolution. The index i is calculated from the formula
i = m + k + 1. Here the minimal value is i = 2 (then m = 1, k = 0); the
maximal value is i = 2M , where M = 2J . The index i = 1 corresponds to the
scaling function

h1(t) =
{

1 for 0 ≤ t ≤ 1,
0 elsewhere. (3)

Let us divide the interval t ∈ [0, 1] into 2M parts of equal length ∆t =
1/(2M); the grid points are

τl = (l − 1)∆t, l = 1, 2, ..., 2M + 1. (4)

Since in the following the integral equations are solved by the collocation
method, the collocation points

tl = (l − 0.5)∆t, l = 1, 2, ..., 2M, (5)

are introduced.
Following Chen and Hsiao [12], the Haar coefficient matrix H is introduced. It

is a 2M × 2M matrix with the elements H(i, l) = hi(tl).
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3. SOLVING INTEGRAL EQUATIONS BY THE WAVELET METHOD

Consider the Fredholm integral equation of the second kind

u(x) =
∫ 1

0
K(x, t, u(t))dt + f(x), 0 < x < 1, (6)

where K and f are given functions.
The function u to be determined is expanded into the wavelet series

u(x) =
2M∑

i=1

aihi(t), (7)

where ai are wavelet coefficients.
Putting (6) in the collocation points xl = (l − 0.5)∆t, we obtain

u(xl) =
∫ 1

0
K(xl, t, u(t))dt + f(xl), l = 1, 2, ..., 2M. (8)

Substituting (7) into (8), we get an algebraic system of equations for evaluating
the coefficients ai. This system is in general nonlinear and some numerical
procedure must be applied to solve it.

The following procedure is used to solve (8).
We assume that (8) is already solved for some value J − 1 to which there

correspond M = 2J collocation points. For the next iteration the number of
collocation points is doubled (the value J is increased by one). The new values
for u(t) and ai are estimated as

û(ν)(t) =
2M∑

i=1

â
(ν)
i hi(t), (9)

where

â
(ν)
i =

{
a

(ν−1)
i for i = 1, ..., M,

0 for i = M + 1, ..., 2M.
(10)

The approximation (10) holds if the coefficients ai for i = M + 1, ..., 2M are
relatively small. In all examples, solved in Section 5, this assumption was justified.

These estimates are corrected with the aid of the Newton method, which leads
to the equation

2M∑

p=1

[
hp(xl)−

∫ 1

0
Ku(xl, t, û

(ν)(t))hp(t)dt

]
∆ap

= −û(ν)(xl) +
∫ 1

0
K(xl, t, û

(ν)(t))dt + f(xl), l = 1, 2, ..., 2M, (11)

where Ku = ∂K/∂u and xl = (l − 0.5)∆t.
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By solving (11) we find ∆a
(ν)
p , and the corrected values for (9), (10) are

a(ν)
p = â(ν)

p + ∆a(ν)
p , u(ν)(t) =

2M∑

p=1

a(ν)
p hp(t). (12)

In all examples considered in Section 5 it was sufficient to apply the procedure
(11) only once (the next step is carried out for a redoubled number of collocation
points). If it turns out that at some level the corrections |∆a

(ν)
p | are too large, then

the iteration by the Newton method must be repeated until

max
p
|∆a(ν)

p | < η, (13)

where η > 0 is a small fixed parameter.
It is suitable to put (11) into the matrix form. For this purpose the symbols

ϕ(l) =
∫ 1

0
K(xl, t, û

(ν)(t))dt, (14)

χ(p, l) =
∫ 1

0
Ku(xl, t, û

(ν)(t))hp(t)dt (15)

are introduced.
If we interpret a(ν),∆a(ν), u(ν), x, f, ϕ as 2M -dimensional row vectors, H, χ

as 2M × 2M matrices, and introduce the notations

S = H − χ, F = −u(ν) + ϕ + f, (16)

then (11) obtains the form
∆a(ν)S = F, (17)

whose solution is ∆a(ν) = FS−1.
It is often convenient to start from the one collocation point solution for which

u
(0)
1 = a

(0)
1 h1(t) = a

(0)
1 ; this constant is evaluated from the equation

a
(0)
1 =

∫ 1

0
K(0.5, t, a

(0)
1 )dt + f(0.5). (18)

The estimates for the next step are â
(1)
1 = a

(0)
1 , â

(1)
2 = 0, and

û(1)(t) = â
(1)
1 h1(t) + â

(1)
2 h2(t) = â

(1)
1 .

These estimates are corrected by solving (11) for M = 1.
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4. EVALUATION OF THE INTEGRALS

The main effort in applying the proposed method is evaluation of the integrals
(14), (15). Let us consider the integral (14). It can be put into the form

ϕ(l) =
2M∑

s=1

∫ τs+1

τs

K(xl, t, û
(ν)(t))dt, (19)

where τs are the grid points defined by (4). It follows from (1) and (7) that
u(ν)(t) = u(ν)(ts) = const in each segment t ∈ [τs, τs+1]. Here ts denotes the sth
collocation point.

Let G be an indefinite integral

G(xl, t, u(ts)) =
∫

K(xl, t, u(ts))dt + const. (20)

Equation (19) can be rewritten in the form

ϕ(l) =
2M∑

s=1

[G(xl, τs+1, û
(ν)(ts))−G(xl, τs, û

(ν)(ts))]. (21)

The integral (15) can be evaluated in a similar way. If we introduce the notation

Gu(xl, t, u(ts)) =
∫

Ku(xl, t, u(ts))dt + const, (22)

we obtain

χ(p, l) =
2M∑

s=1

[Gu(xl, τs+1, û
(ν)(ts))−Gu(xl, τs, û

(ν)(ts))]hp(ts). (23)

To demonstrate the efficiency of the proposed solution, in the next section some
numerical examples are solved. All calculations were carried out with the aid of
MATLAB programs, which are very convenient in matrix representation.

To estimate the exactness of the achieved results, integral equations for which
the exact solution uex is known are considered. The error function ε is taken in the
form

ε = max
1≤l≤2M

(| u(ν)(xl)− uex(xl) |). (24)
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5. ILLUSTRATING EXAMPLES

Example 1. Solve the equation

u(x) =
x

20

∫ 1

0
tu2(t)dt + 3 + 0.6625x, (0 < x < 1). (25)

The exact solution is uex(x) = 3 + x.

It follows from (20) and (22):

G(xl, t, u(ts)) =
1
40

xlt
2u2(ts) + const,

Gu(xl, t, u(ts)) =
1
20

xlt
2u(ts) + const.

In view of (21) we obtain

ϕ(l) =
1
40

xl

2M∑

s=1

(τ2
s+1−τ2

s )[û(ν)(ts)]2 =
1
20

xl

2M∑

s=1

τs + τs+1

2
(τs+1−τs)[û(ν)(ts)]2.

Since ts = 0.5(τs + τs+1) and ∆t = τs+1 − τs, this result can be put into the
form

ϕ(l) =
1
20

xl∆t
2M∑

s=1

ts[û(ν)(ts)]2. (26)

In a similar way we obtain

χ(p, l) =
1
10

xl∆t

2M∑

s=1

tsû
(ν)(ts)hp(ts). (27)

According to (18) the one collocation point solution is u
(0)
1 = a

(0)
1 = 3.483.

Estimates for the next approximation are â(1) =
(
a

(0)
1 , 0

)
, û(1) =

(
u

(0)
1 , u

(0)
1

)
.

Solution of (17) gives ∆a
(1)
1 = 0.0127, ∆a

(1)
2 = −0.248, consequently, a

(1)
1 =

3.496, a
(1)
2 = −0.248. It follows from (7) that u

(1)
1 = 3.248, u

(1)
2 = 3.743. The

error estimate (24) for this approximation is ε = 0.006. Errors of the subsequent
approximations are given in Table 1. With the purpose of following the convergence
speed the quantity ρ = εJ−1/εJ , where J = 1, 2, ..., is introduced (the value ε0

corresponds to the one collocation point solution).
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Table 1. Error estimates (24) and convergence speed ρ for Eq. (25)

J 2M ε ρ

1 4 2.3E-3 2.9
2 8 6.3E-4 3.7
3 16 1.6E-4 3.9
4 32 4.1E-5 3.9
5 64 1.0E-5 4.0
6 128 2.6E-6 4.0

Example 2. Let us consider the following weakly singular equation

u(x) =
∫ 1

0
| x− t |−1/2 u2(t)dt + f(x), (28)

where f(x) = [x(1− x)]1/2 + 16
15x5/2 + 2x2(1− x)1/2 + 4

3x(1− x)3/2 + 2
5(1−

x)5/2 − 4
3x3/2 − 2x(1− x)1/2 − 2

3(1− x)3/2, 0 < x < 1.
This problem was solved by Pedas and Vainikko [4], making use of the

piecewise linear collocation method. The exact solution is

uex(x) =
√

x(1− x).

Let us make use of the Haar wavelet method. It follows from (20) that

G(xl, t, u(ts)) = 2[u(ts)]2
{ −√xl − t for xl > t,√

t− xl for xl < t.

It is expedient to introduce the function

g(s, l) =





√
τs+1 − xl −

√
τs − xl for xl ≤ τs,√

τs+1 − xl +
√

xl − τs for τs < xl < τs+1,√
xl − τs −√xl − τs+1 for τs+1 ≤ xl.

(29)

Now (21) gets the form

ϕ(l) = 2
2M∑

s=1

[û(ν)(ts)]2g(s, l). (30)

Carrying out analogical calculations with (23), we obtain

χ(p, l) = 4
2M∑

s=1

û(ν)(ts)g(s, l)hp(ts). (31)
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Table 2. Error estimates ε, εN and convergence rates ρ, ρN for Eq. (28)

J 2M ε ρ εN ρN

1 4 2.0E-2 1.2 – –
2 8 1.5E-2 1.3 6.9E-3 –
3 16 4.8E-3 3.1 1.6E-3 4.3
4 32 1.5E-3 3.2 2.3E-4 7.0
5 64 4.6E-4 3.3 2.9E-5 7.9
6 128 1.7E-4 2.7 7.1E-6 4.1

Starting the numerical calculations with one collocation point, we find u
(0)
1 =

a
(0)
1 = 0.4102. The estimate for the second approximation is â(1) =

(a(0)
1 , 0), û(1) = (a(0)

1 , a
(0)
1 ). It follows from (17) that ∆a(1) = (−0.0015, 0) and,

consequently, a(1) = (0.4087, 0), u(1) = (0.4087, 0.4087). Since the exact values
are uex(0.25) = uex(0.75) = 0.4330, the error is ε = 0.024. The quantities ε and
ρ for different values of J are indicated in Table 2. The symbols εN , ρN denote
the error and convergence speed found in [4]. It should be noted that the error
functions ε and εN are not strictly comparable, since in [4] the collocation points
are not uniformly distributed and in each subinterval linear approximation has been
used.

Example 3. Solve the equation

u(x) = x

∫ 1

0
t
√

u(t)dt + 2− x

3
(2
√

2− 1)− x2, (32)

which has the exact solution uex = 2− x2.
Evaluating the functions ϕ and χ, we find according to (21) and (23):

ϕ(l) = xl∆t

2M∑

s=1

ts

√
û(ν)(ts), (33)

χ(p, l) = 0.5xl∆t
2M∑

s=1

tshp(ts)√
û(ν)(ts)

. (34)

Satisfying (18), we get two solutions a(0) = 0.756, a
(0)
∗ = 1.253. Let

us consider the first solution. The approximation for M = 1 gives a(1) =
(1.695, 0.246) and u(1) = (1.941, 1.448) with the error ε = 0.01. Error estimates
for the following approximations are shown in Table 3. Practically the same
results are achieved if we start with the value a

(0)
∗ = 1.253. Correcting it with

the aid of (17), we get again u
(1)
∗ = (1.941, 1.448) and, of course, the following

approximations also coincide.
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Table 3. Error estimates ε and convergence rates ρ for Eq. (32)

J 2M ε ρ

1 4 3.3E-3 3.0
2 8 2.7E-3 1.2
3 16 1.1E-3 2.5
4 32 3.7E-4 3.3
5 64 1.1E-4 3.3
6 128 3.1E-5 3.6

Example 4. Here the equation

u(x) = x2

∫ 1

0

t2dt

1 + u2(t)
+

(
1
2
− ln 2

)
x2 +

√
x, 0 < x < 1, (35)

is solved. The exact solution is uex =
√

x. The functions ϕ and χ take the form

ϕ(l) = −2
3
x2

l ∆t
2M∑

s=1

(3t2s + 0.25∆t2)û(ν)(ts)U2
s hp(ts), (36)

χ(p, l) =
1
3
x2

l ∆t
2M∑

s=1

(3t2s + 0.25∆t2)Us, (37)

where Us =
{
1 + [û(ν)(ts)]2

}−1
.

Satisfying (18), we get the equation

4a(0) − 1
3 + 3[a(0)]2

+ ln 2− 1
2
− 2

√
2 = 0,

which has the solution a(0) = 0.714.
Starting with the estimate â(1) = (0.714, 0), û(1) = (0.714, 0.714), we find

that the corrected values are a(1) = (0.684,−0.184), u(1) = (0.500, 0.869) with
the error ε = 0.003. Exactness of the approximations follows from Table 4.

Table 4. Error estimates ε and convergence rates ρ for Eq. (35)

J 2M ε ρ

1 4 9.6E-4 2.9
2 8 2.7E-4 3.5
3 16 7.2E-5 3.8
4 32 1.8E-5 3.9
5 64 4.7E-6 3.9
6 128 1.2E-6 4.0
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6. CONCLUSIONS

The main benefits of the Haar wavelet method are sparse representation, fast
transformation, and possibility of implementation of fast algorithms (especially
if matrix representation is used). For this reason the accuracy of the obtained
solutions is quite high even if the number of calculation points is small. This
circumstance follows also from Tables 1−4: even a four collocation point solution
gives in most cases satisfactory precision. By increasing the number of collocation
points the error of the solution rapidly decreases.

Approximation with the Haar wavelets is equivalent to the approximation with
piecewise constant functions. If the functions K and f in (6) are sufficiently
smooth, then the convergence rate for piecewise constant functions is O(M−2);
this result can be transferred also to the Haar wavelet approach. If the initial values
are sufficiently good, the Newton method has also quadratic convergence. So it
could be expected that in the case of our solution, by doubling the number of
collocation points, the error function roughly decreases four times. This theoretical
estimation in general holds also for the data in Tables 1−4. For small values of
J some “adaption” takes place due to the small number of calculation points, but
for bigger values of J the convergence rate ρ is quite near to the theoretical value
ρ = 4. Exceptional is only Example 5.2, where Eq. (28) is weakly singular (this
fact reduces the convergence rate). Comparing the results of this example with the
data of [4], we see that the results of [4] are somewhat more exact, but the fact that
it is simpler supports our solution.

Solving nonlinear integral equations by the Haar wavelet method is favoured
by the fact that we can take the initial solution for the Newton method in the form
(10). Such a simple way is not applicable in piecewise constant approximation.
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Mittelineaarsete integraalvõrrandite lahendamine
Haari lainikute meetodil

Ülo Lepik ja Enn Tamme

On välja töötatud Haari lainikutel baseeruv numbriline meetod mittelineaarsete
Fredholmi integraalvõrrandite lahendamiseks. Meetodi efektiivsust on kontrollitud
nelja konkreetse näite varal, mille puhul on täpne lahendus teada. Viimane asjaolu
võimaldab hinnata saadud numbriliste resultaatide viga. Selgub, et vajalik täpsus
on tagatud juba väikese võrgupunktide arvu korral.
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