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Abstract. The δ13C record from an early Sheinwoodian limestone unit in the Prague Basin suggests its deposition during the time 
of the early Sheinwoodian carbon isotope excursion (ESCIE). The geochemical data set represents the first evidence for the ESCIE in 
the Prague Basin which was located in high latitudes on the northwestern peri-Gondwana shelf during early Silurian times. 
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INTRODUCTION 
 
The early Sheinwoodian carbon isotope excursion 
(ESCIE) is known from several palaeocontinents in the 
Silurian tropics and subtropics (Lehnert et al. 2010, with 
references therein). Most records are documented from 
different parts of Laurussia, including its Laurentian 
part (e.g., Saltzman 2001; Brand et al. 2006), the 
Baltoscandian Basin (e.g., Munnecke et al. 2003; Kaljo 
et al. 2007; Racki et al. 2012) and the Avalonian part of 
Laurussia (e.g., Loydell & Frýda 2007). There is one 
study from tropical Gondwana (New South Wales; 
Talent et al. 1993) and only two records from higher 
latitudes of peri-Gondwana and Gondwana (Wenzel 1997; 
Vecoli et al. 2009). 

From the Prague Basin, all the other major Silurian 
δ13C excursions associated with different bioevents such 
as the late Aeronian sedgwickii Event, the Homerian 
Mulde Event, the Ludfordian Lau Event or kozlowskii 
Event and the Silurian/Devonian boundary event have 
been reported (Frýda & Frýdová 2014, with references 
therein). 

In this short paper, we report the first δ13C record of 
the ESCIE from an early Sheinwoodian limestone unit 
in the Prague Basin. Oxygen isotope data from the 
Eastern Baltic (Lehnert et al. 2010) suggest a strong 
shift into icehouse conditions during the event and 

represent, beside coeval diamictites in western peri-
Gondwana, an evidence of an early Silurian glaciation. 
The expression of this glacial in the Prague Basin has 
already been discussed with respect to the deposition  
of early Sheinwoodian limestones during a glacially-
driven major sea level drop (Lehnert et al. 2010). 
 
 
GEOLOGICAL  SETTING 
 
The Lower Silurian successions in the Prague Basin 
(northern peri-Gondwana) are exclusively composed  
of fine-grained siliciclastics (Kří� 1998). The oldest 
Silurian carbonate deposition occurs in the middle part 
of the Stimulograptus sedgwicki graptolite Biozone 
(Aeronian, Llandovery) during a rapid sea level drop 
associated with the late Aeronian carbon isotope excursion 
(�torch & Frýda 2012, with references therein). The 
first lenses and beds of micritic and bioclastic lime-
stones younger than Llandovery in age, with abundant 
fossils of the Niorhynx Community of Havlíček & �torch 
(1990), occur in the Cyrtograptus murchisoni and 
Monograptus riccartonensis biozones. This signal, 
indicating warmer conditions or a sea level drop in the 
Prague Basin, has been documented near Prague by 
Bouček (1937, Řeporyje area) and Havlíček & �torch 
(1990, Malá Chuchle area). In the Central Segment  
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of the Prague Basin comparable bioclastic limestones 
formed during the C. murchisoni Biozone (Svatý Jan area, 
Kří� 1991). 

The Sheinwoodian (early Wenlock) strata in the 
Prague Basin are represented by the lower part of the 
Motol Formation which comprises the uppermost 
Telychian (Llandovery) through the entire Wenlock 
(Kří� 1975). This lower part of the formation is sedi-
mentologically more uniform and mainly consists of 
calcareous clayey shales. In its middle and upper parts 
volcanic rocks and limestones are significant. Facies 
distribution was strongly influenced by synsedimentary 
tectonics and volcanic activity in the upper Motol 
Formation (Bouček 1934, 1953; Horný 1955, 1960;  
Kří� 1991). Its thickness varies from 80 to 300 m  
(Kří� 1998). 

The section described in this paper (49°57′29.533″N, 
14°5′48.190″E, section No. 566 by Kří� 1992) is located 
on the left (north) bank of the Berounka River, south of 
the village of Li�tice near Beroun (Fig. 1). It is located 
in the Northern Segment of the Prague Basin (NW of 
Tachlovice fault) which had a lower subsidence rate 
than the adjacent Central Segment. The thickness of  
the Motol Formation reaches here only about 100 m 
(Kří� 1998). 

The studied section starts in laminated siliceous 
graptolitic shales of the Oktavites spiralis graptolite 
Biozone (Horný 1955). The top of this shale succession 
shows an irregular erosional surface covered by an 
about 2 m thick limestone unit (Fig. 2A). The front part 
of this limestone shows megaslab internal deformation, 
brecciation and folding, as well as soft sediment 
deformation in the shale matrix. In the backpart, 
where the megaslab was partly disrupted (Fig. 2B) and 
represents some badly sorted megabreccia, less and less  
 

 

 
 

Fig. 1. Distribution of Silurian rocks in the Barrandian area 
(Perunica), including the position of the studied section 
(modified after Kří� 1992). 

limestone beds are preserved until one last bed is 
disappearing upslope towards the volcanic centre. The 
matrix of the huge limestone slab is mainly some  
brown-green tuffite. Horný (1955) suggested a transport 
of limestone blocks from the present-day north or northeast 
to the south. The limestone succession is dominated  
by extremely fine-grained, laminated grainstones with 
intercalated coarser-grained bioclastic pack- to grain-
stones with brachiopods and crinoids as well as some 
thin brachiopod layers (Fig. 2C). Some parts, especially 
close to the top of the limestone unit, contain a high 
admixture of volcanoclastic components (Fig. 2D). Kří� 
(1992) noted that this succession is represented by  
two types of limestones, one bearing mainly brachiopods 
(Niorhynx niobe, Cyrtia spiriferoides, Hircinisca 
rhynchonelliformis, Bleshidium papalas and Gladiostrophia 
mixta), the other one mainly trilobites (Trochurus 
speciosus, Planiscutellum planum, Staurocephalus 
murchisoni, Cheirurus insignis and Decoroproetus 
decorus). Horný (1955) found Cyrtograptus cf. murchisoni 
in limestone clasts within the redeposited unit. Later, 
Dufka (1992) discovered the abundant occurrence of the 
biostratigraphically significant chitinozoan Margachitina 
margaritana. The limestones are covered by a shale 
succession with rare, thinly laminated limestone beds 
corresponding to the Monograptus belophorus to 
Cyrtograptus perneri�C. ramosus biozones (Horný 1962; 
Kří� 1992). 
 
 
METHOD  AND  RESULTS 
 
The parauthochthonous section throughout the lime-
stone unit in the Li�tice section No. 566 has been 
sampled about 15 m behind its deformed front (Fig. 2A) 
where the beds still seem to be intact and tectonically 
undisturbed. Most of the limestone beds are partly 
silicified and show an admixture of volcanoclastic 
components (Fig. 2D). A total of 55 carbonate samples 
were analysed for δ13C. Forty-two samples originate 
from the measured section (Fig. 2A), five samples from 
thinly laminated limestone beds of the mostly tuffitic 
shale succession overlying the limestone unit and eight 
samples from the base and top of the megaslab along  
the whole outcrop, collected to analyse the spatial 
distribution of δ13C values in its more disrupted parts. 

Carbonate powders were reacted with 103% 
phosphoric acid at 70 °C using a Gasbench II connected 
to a ThermoFinnigan Five Plus mass spectrometer. All 
values are reported in per mil relative to V-PDB by 
assigning a δ13C + 1.95� to NBS19. Accuracy and 
precision were controlled by replicate measurements of 
laboratory standards and were better than ± 0.1� for the 
carbon isotope data. 
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The δ13C analysis of the 42 samples from the 
measured section revealed a high variability of values 
up to 4.10� (Fig. 3). Similar δ13C values (from 1.72� 
to 3.22�) were found in eight samples from limestone 
blocks in the more disrupted part of the megaslab.  
The δ13C values of five samples from thin laminated 
limestone beds within the tuffitic shale succession 
covering the limestones are much lower and range from 
� 2.66� to � 1.23�. 
 
 
STRATIGRAPHIC  FRAMEWORK  AND  
CONCLUSIONS 
 
The abundant occurrence of Margachitina margaritana, 
a chitinozoan zonal index for the base of the Sheinwoodian 

(Wenlock; Loydell 2012), in the limestones at Li�tice 
(Fig. 3) might be equivalent to the C. murchisoni graptolite 
Biozone, but the taxon occurs also in the Telychian 
O. spiralis graptolite Biozone (Loydell & Nestor 2005). 
The limestone megaslab covers the irregular erosional 
surface on top of the shales of the O. spiralis graptolite 
Biozone (Figs 2B, 3). Horný (1955) and Kří� (1992) 
mentioned C. murchisoni from the limestone of the 
megaslab, hitherto the most exact biostratigraphic 
marker. The first appearance (FAD) of C. murchisoni 
is considered to indicate the base of the Wenlock 
Series and represents the index of the basal zone  
of the Sheinwoodian (Loydell 2012), followed by 
M. riccartonensis. However, the last occurrence  
of C. murchisoni is complicated. In many areas 
C. murchisoni  disappears  just  before  the  FAD  of  

 

 
Fig. 2. A, general view of the Li�tice limestone megaslab (section No. 566 of Kří� 1992) showing the position of the measured
section; the scale bar is 0.5 m; B, basal part of the Li�tice section showing the laminated siliceous graptolitic shales of the
Oktavites spiralis Biozone with the irregular erosional surface at their top, covered by brecciated limestones in the more distal and
stretched part of the megaslab, which in relation to its origin at the volcanic centre reflects the most proximal end of this limestone
body; the scale bar is 0.1 m; C, fine-grained, laminated grainstones with intercalations of thin brachiopod layers; the scale bar is
1 cm; D, coarse-grained and poorly sorted bioclastic grainstone, with high admixture of volcanoclastic components overlain by
fine-grained and laminated grainstones close to the top of the limestone succession; the scale bar is 0.5 cm. 
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M. riccartonensis. However, in the Prague Basin 
C. murchisoni occurs also in the lower M. riccartonensis 
Biozone as the subspecies C. murchisoni bohemicus 
(�torch 1994, 1995; Williams & Zalasiewicz 2004). 
Therefore, the most likely age of the limestone succession 
is early Sheinwoodian (C. murchisoni to the lower part 
of the M. riccartonensis biozones). 

The 42 samples from the measured section reveal  
a high variability in δ13C values (Fig. 3). This fact, 
together with possible internal deformation and brecciation 
in parts of the redeposited unit, suggests that duplications 
or gaps may occur within the section. On the other hand, 
the δ13C values, showing rather a repeating non-random 
pattern (Fig. 3) than a random sawtooth pattern of 
chaos, may represent a real record. A similar degree of 
variation for the ESCIE was documented in the eastern 
Appalachian Basin (McLaughlin et al. 2012, fig. 3). 

The δ13C values of up to 4.10� are far above the 
early Sheinwoodian δ13C background values of about 
1� (e.g., Cramer et al. 2011). The high δ13C values 
suggest carbonate deposition during a positive δ13C 
anomaly in the global marine carbon cycle. If we take 
the most likely biostratigraphic age of the limestone 
succession (C. murchisoni to lower M. riccartonensis 
biozones) into account, the sedimentation of the 
limestones at Li�tice clearly took place during the 
ESCIE. 
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