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Abstract. Insufficient knowledge of carbon isotope cycling in the latest Silurian initiated the study of two regions at the western 
and southwestern margins of Baltica in order to obtain a more complete picture about the carbon isotope trend through the Přídolí. 
Shallow and open shelf carbonate rocks of the Dniester River outcrops and Kotuzhiny core in Podolia and deep shelf rocks of the 
East Baltic area, especially the Lithuanian cores, were studied for bulk-rock isotope analysis. The data sets of both regions begin 
with the mid-Ludfordian excursion and include also some part of the lowermost Devonian. The data show a new minor twin positive 
δ13C excursion (peak values 0.8�1.7�) in the upper Ludfordian. The Přídolí carbon isotope trend begins with a low of negative 
δ13C values, succeeded by the lower to middle Přídolí �stability� interval (variable values below or close to 0� with a slight rising 
trend). The upper Přídolí begins with a medium to major excursion (peak values 2.3�4.5�), which reflects the pattern of the 
carbon isotope trend on the west of the Baltica palaeocontinent. Its wider significance awaits confirmation from observations 
elsewhere. The carbon isotope excursion at the Silurian�Devonian boundary, named here the SIDE excursion (its δ13C values 
range from 1.6� in deep shelf settings to 3.8� in shallower ones and 4.5� in brachiopod shells), has been traced on several 
continents, and now also in Baltica. This excursion can serve as a well-dated global chemostratigraphic correlation tool. The shape 
of the excursion indicates the completeness of the studied section. We conclude that carbon isotope chemostratigraphy may 
contribute to subdividing the Přídolí Series into stages and that Baltica sensu lato seems to be the right place for such a development. 
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INTRODUCTION 
 
Carbon isotope studies in the Lower Palaeozoic, including 
chemostratigraphy, have been progressing notably during 
the last two decades. This is well marked by a series of 
publications of IGCP project 503 and earlier papers. 
Most of the Silurian papers discuss the Wenlock and 
Ludlow carbon isotope trends, but much less attention 
has been devoted to the Llandovery and the Přídolí. 
Insufficient knowledge of carbon isotope cycling through 
the latest Silurian seems a serious gap despite the 
shortness of that epoch. For this reason we returned to 
the excellent Dniester River outcrop sections in Podolia 
with their rich fossil content and continuous marine 
transition into the Devonian. Already the first comparisons 
of new data with those from the East Baltic showed 
several minor coincidences in trends (Ohesaare and 
Ventspils cores, Kaljo et al. 1998), but the two positive 
excursions noted in Podolia (Kaljo et al. 2009) were  

not observed in the Baltic sections. This raised several 
questions and we decided to check also the Baltic 
situation by study of more continuous drill core sections  
in Lithuania which penetrated deep shelf rocks of the 
Silurian Minija and Jura formations (Fms) and the much 
shallower marine Devonian Til�e Formation (Fm). 

The main task of this paper is to present the results 
of the study of these two regions at the western and 
southwestern margins of Baltica in order to provide  
a more complete record of the carbon isotope trend 
through the Přídolí Epoch. These data would also enable 
adjustment of the generalized δ13Ccarb curve (Cramer et 
al. 2011), which, in part of the upper Přídolí, shows a 
small excursion but any reasoning is missing. Wishing 
to achieve firm linkage with earlier published trends,  
we began our study interval with the mid-Ludfordian 
(sometimes called the Lau) excursion and finished it at 
another excursion (named Klonk by Buggisch & Joachimski 
2006) at the Silurian�Devonian boundary (= S/D below). 
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Our team at the Institute of Geology, Tallinn University 
of Technology, initiated carbon isotope studies in the mid-
1990s. Involving colleagues from other countries, we have 
published δ13Ccarb curves for most of the Baltic Silurian 
System except for the Přídolí (see references). Recently 
Munnecke et al. (2010) compiled a comprehensive synopsis 
of the majority of those publications and thus a more 
detailed overview is unnecessary here. However, in 
addition to studies performed by our group on isotopes 
of the East Baltic Přídolí, papers by Azmy et al. (1998) 
and �igaite et al. (2010) should also be mentioned. The 
former is a wider paper that documented only negative 
values from bioclasts collected from the rocks in the 
Kolka, Taurage, etc. drill cores. The latter, based on δ18O 
analyses from the Geluva-99 core, identified a cooling 
episode at the junction of the Vievis and Lapes Fms 
(discussed further below). 

The Silurian�Devonian chemostratigraphy of Podolia 
has been less discussed in publications. A pioneering 
paper by Azmy et al. (1998), mentioned above, reported 
results of 21 analyses of Silurian brachiopod shells from 
Podolia. Three of them revealed the early Wenlock δ13C 
excursion, but eight bioclast and three rock matrix 
analyses from the Přídolí did not show any important 
isotopic shift. On the basis of 149 bulk rock analyses 
Kaljo et al. (2007) documented three global δ13C 
excursions in the lower and upper Wenlock and upper 
Ludlow of Podolia, but the Přídolí was not studied.  
A recent paper by Malkowski et al. (2009), based 
mainly on 104 bulk-rock samples (in addition to  
eight brachiopod bioclasts) from the Silurian�Devonian 
transition interval, revealed a major positive carbon 
isotope excursion exactly at the systemic boundary, with 
the δ13Ccarb values reaching 4.1�. This excursion has 
earlier been established in several localities on different 
continents (Andrew et al. 1994; Hladíková et al. 1997; 
Saltzman 2002; Buggisch & Joachimski 2006), which 
testifies to its value as a global marker excursion. 

The above brief overview of carbon isotope studies 
shows that data sets concerning the Přídolí are rather 
scarce everywhere. Podolia seems the most promising 
region for improving knowledge of the latest Silurian 
carbon isotope trend. We started with the study of a drill 
core at the Kotuzhiny village, western Ukraine, and 
reported the preliminary results at the SSS Sardinia 
meeting (Kaljo et al. 2009). The current paper is an 
elaboration of these results that are complemented with 
a Baltic sensu stricto data set. 
 
 
GEOLOGICAL  SETTING 
 
The two areas considered in this study were during the 
late Silurian parts of a larger sea on the western and 

southwestern margins of Baltica (Fig. 1). Two outcrop 
areas, Estonia and Gotland in the north and the Dniester 
River region (Podolia, Ukraine) in the south, are known as 
classical areas of Silurian rocks with a long study history. 
The subsurface areas in between (Latvia, Lithuania, east 
Poland, Belarus and north Ukraine) were studied in the 
course of different drilling projects. The youngest strata 
of Podolia (Skala Étage by Kozłowski 1929) were 
proposed in 1981 as a candidate for the fourth series of 
the Silurian System (Abushik et al. 1985). 

The northern part of the basin embracing the East 
Baltic, Gotland and northeast Poland is a gulf-like peri-
continental shelf sea, which at times in the early Silurian 
had epicontinental extensions towards the centre of the 
continent. Figure 1 shows the environmental situation  
in the early Přídolí when previously wide facies belts were 
considerably reduced due to late Silurian regression  
and step by step moved towards NE Poland. In the 
southern part of the basin (Podolia, Moldova), where 
facies distribution follows the pericontinental pattern, 
those territorial changes were less notable � facies belts 
were narrower and therefore the bathymetric and facies 
changes were more rapid. The environmental develop-
ment of these two areas has several common features, 
but also differences (Einasto et al. 1986). The starting 
point of our study, the mid-Ludfordian sea level drop 
and accompanying events (e.g. extinction of several 
groups, δ13C shift), is easily recognized in both areas, as 
is the following short-lived deepening episode in the 
latest Ludlow. The Přídolí sea level pattern is rather 
different in these areas � a general regression occurs  
in the north, but the situation is reversed in the Dniester 
River sections. 

The section in Podolia begins with the uppermost 
Llandovery, ranges up to the end of the Přídolí and 
continues into the lower Devonian. The outcrop at the 
Dniester River and its tributaries was briefly described 
in Kaljo et al. (2007). In order to facilitate the reading  
of the paper, we include here a correlation chart (based 
mainly on biostratigraphy) presenting all needed strati-
graphical terminology (Fig. 2). The terminology for the 
East Baltic and Gotland is rather traditional (Nestor 1997; 
Pa�kevičius 1997; Calner et al. 2004). More changes 
occur in the Podolian part � in general the unit names 
by Tsegelnyuk et al. 1983 (as in Kaljo et al. 2007) are 
used, but their orthography follows the recommendations 
by the International Stratigraphical Guide (Salvador 
1994, chapter 3, B. 3). This means that the Ukrainian 
language is taken as a primary basis for spelling even 
if some cases seem arguable (e.g. Dzwinogorod by 
Kozłowski 1929, Abushik et al. 1985, Koren et al. 
1989; Zvenigorod by Tsegelnyuk et al. 1983, Gritsenko 
et al. 1999; Dzv(w)enygorod by Malkowski et al. 2009). 
Still, in order to avoid repetition of the terminological 
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content of the chart in Fig. 2, we show here, i.e. before 
the right place in the discussion chapter, the chemo-
stratigraphical event or correlation lines. It should be 
noted that these lines caused only slight moving of a 
boundary line in the upper Přídolí. The locality numbers 
used in this paper follow those applied by Tsegelnyuk et 
al. (1983). The last paper noted also all known meta-
bentonite beds (in the Isakivtsy � 3, Prygorodok � 6, 
Varnytsya � 2, Trubchyn � 2, Dzvenygorod � 1). Some 
of those are better studied (Huff et al. 2000; Kiipli et al. 
2000) and are helpful for local correlation of sections 
(note several beds marked C2 etc. in Figs 4, 5) revealing 
sampling gaps noted at some outcrops. 

An initial suite of samples for this study was taken 
from a drill core near the Kotuzhiny village ca 35 km 

NNE from the town of Ternopil. The drilling site lies 
roughly 125 km north of the Dniester River, but facies 
belts following the configuration of the western margins 
of the Baltica landmass are also directed northwards 
(Fig. 1). The drilling partly penetrated very shallow-water 
facies (uppermost Ludlow to lower Přídolí), represented 
by dolomitic rocks with gypsum interbeds and obvious 
gaps. Higher in the Přídolí, the facies became gradually 
more marine, as evidenced by limestones, marlstones and 
even argillites with graptolites (Monograptus uniformis) 
occurring in the lowermost Devonian. This indicates that 
after a sea level low stand in the late Ludlow and earliest 
Přídolí, later during the Přídolí the Podolian basin 
experienced a continued transgression and deepening. 
The same general pattern occurs also in the Dniester River  

 

 
 

Fig. 1. Location of the studied sections and general facies zonation of the West Baltica marginal sea basin during early Přídolí
time. Modified from Einasto et al. (1986) and Bassett et al. (1989). Facies belts (signature shows presence of sediments, white
areas � postsedimentary erosion or no data): 1, tidal-flat�lagoonal; 2, high-energy shoal-bar; 3, open shelf, mid-ramp; 4, offshore
shelf, outer ramp; 5, ramp/shelf depression. 
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outcrops (Isakivtsy, Okopy, Trubchyn, Dnistrove, etc.) 
sampled for this study in 2010, but with one difference � 
the general facies situation was always slightly deeper 
than at Kotuzhiny, where graptolites are not found. 

This is clearly demonstrated by the succession of 
benthic fossil communities described from the corres-
ponding formations. As is well known, those communities 
are more or less depth-related, and occur alongside 
each other, being tied to certain facies belts (Boucot  
& Lawson 1999). Their temporal succession gives 
evidence of sea depth changes through consecutive time 
slices of basin history. Below, we quote some data from 
Gritsenko et al. (1999), indicating clearly the general 
trend of sea level changes in the Podolian basin during 
most of late Silurian time. It should be noted that  
such a pattern deduced from the distribution of fossil 
communities might be locally deformed by tectonic and 
basin fill processes (Munnecke et al. 2010). 

The early Ludfordian Grinchuk Fm is characterized 
by representatives of the Didymothyris didyma, 
Atrypoidea prunum and Dayia navicula brachiopod 
communities, and the Balizoma�Encrinurus macrourus 
trilobite community belonging mostly to benthic 
assemblage (BA) 3, partly also to BA 2. The 
Rhizophyllum gothlandicus coral community, belonging 
to BA 2, occurs near the top of the Grinchuk Fm. The 
brachiopod communities may in some localities continue 

also into the lower part of the Isakivtsy Fm, but its 
upper part (containing only the trilobite Acaste podolica) 
and the Prygorodok Fm are practically barren beds. 
From the latter formation only stromatolites (BA 1) have 
been noted (Gritsenko et al. 1999). The lower Přídolí 
(Varnytsya Fm) has yielded brachiopods of the Atrypoidea 
gigantus, trilobites of the Acaste podolica and Proetus 
scalicus and cnidarians of the Stelopora rara communities, 
all belonging to BA 2. The Trubchyn Fm marks slight 
deepening, but is still rather shallow, as testified by the 
Stegorhynchella pseudobidentata brachiopod community 
(BA 2) and the Lophiostroma schmidti and Endophyllum 
commodus cnidarian communities (both BA 2�3). The 
Dzvenygorod Fm represents open shelf facies conditions, 
as shown by the Dayia bohemica brachiopod, Calymene 
dnestroviana trilobite and Holacanthia socialis coral 
communities (all BA 3, the last one also BA 4). The 
deepening of the basin continues also at the very beginning 
of the Devonian through the Khudykivtsy Fm, where 
besides open shelf (BA 3) brachiopods (Ambocoelia 
praecox) and corals (Mucophyllum crateroides) there 
occur deep shelf (BA 4�5) trilobites and a few graptolites 
(Gritsenko et al. 1999). 

The Přídolí in the East Baltic area shows a general 
step-by-step regression and infilling of the basin with  
a specific complex of terrigenous�carbonate sediments. 
Nestor & Einasto (1997) defined this infilling dominating 

 

 
 

Fig. 2. Baltic�Podolian lithostratigraphical nomenclature and bio- and chemostratigraphical correlation chart. For explanations
see text. Abbreviations: L. Dev. � Lower Devonian; Lochk. � Lochkovian; Beds in the Jura Fm: R � Rietavas, K � Kelme,
Gi � Gird�iai; in the Targale Fm: L � Lu�ni, Ga � Garzde, V � Venzava; in the Torgu Fm: U � Uduvere, H � Himmiste, S � Sauvere.
Generalized graptolite zones according to Koren et al. (1996). Grey lines (disruped when doubtful) are chemostratigraphic event
or correlation lines, discussed in detail in the �Discussion� section of the paper. 
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from the late Ludlow (the Kuressaare Age) up to the end 
of the Silurian, when the basin depression was filled by 
terrigenous material and in the open shelf area bioclastic 
marls replaced earlier limestones or partly even intercalate 
with skeletal sands in the shoal belt. 

Two facies areas are represented in the East Baltic. 
Shallow-water belts occur in SW Estonia (Saaremaa 
Island) and north Kurzeme (Latvia); southwards follows 
a tectonic�erosional gap (Fig. 1) in distribution, but the 
above facies belts continue in eastern Lithuania. Deeper-
shelf rocks occur mostly in western Latvia and Lithuania, 
continuing to the Kaliningrad region of Russia and NE 
Poland. For detailed stratigraphy of the Přídolí rocks and 
environmental zonation of the sedimentary basin different 
communities and biozones have been used, most efficiently 
microfossil ones (ostracodes, conodonts, chitinozoans and 
vertebrates). The corresponding papers are quoted in the 
text as needed, but a more detailed overview and references 
are available in the summarizing books by Raukas & 
Teedumäe (1997) for Estonia and by Pa�kevičius (1997) 
for Lithuania. Latvia is treated in both books, especially 
in the latter embracing the entire East Baltic. 
 
 
METHODS 
 
To achieve the goals of our study, the compilation of a 
general carbon isotope trend for the Přídolí in particular, 
analyses made at regular sampling intervals were required. 
For this purpose we analysed bulk-rock samples, not 
calcite from brachiopod shells, which are commonly 
considered to be better for isotope studies, but which 
occur too unevenly for such kind of research as our 
project. 

Carbon and oxygen isotope analyses were performed 
by T. Martma in the Laboratory of Palaeoclimatology  
of the Institute of Geology at Tallinn University of 
Technology, using a standard method explained in more 
detail in Kaljo et al. (1997) and Martma et al. (2005). 
Here we note only that whole-rock samples were crushed, 
powdered and treated with 100% phosphoric acid at 
70 °C for 2 h and analysed by the Delta V Advantage 
mass spectrometer with the GasBench II preparation line. 
All results were checked regularly against laboratory 
control samples and the international standard. The results 
are given in the usual δ-notation, as per mil deviation 
from the VPDB standard. Reproducibility of replicate 
analyses was generally better than 0.1�. 

The Silurian rocks used by us for carbon isotope 
analyses show very little or no late diagenetic overprint. 
The same observation has been made by SEM, cathodo-
luminescence and trace element studies (Azmy et al. 
1998) and is supported by data on the conodont colour 

alteration index (CAI) from different parts of the East 
Baltic (Männik & Viira 2005) and southwest Ukraine 
(Drygant 1984). According to these authors, the CAI  
of the Silurian conodonts remains between 1 and 1.5, 
indicating that the rocks have been heated up to 50�60 °C 
or even up to 90 °C (Nowlan & Barnes 1987). In the light 
of the above data and earlier experience (Samtleben et al. 
1996; Kaljo et al. 1997; Heath et al. 1998), showing that 
rocks are as a rule excellently preserved, we anticipated 
good results of carbon isotope analysis based on the 
bulk-rock samples also in our current Přídolí study. 
However, data from some cores show partial diagenetic 
alteration of rocks (Kaljo et al. 1997). Such a possibility 
should always be remembered. 
 
 
RESULTS 
 
The analytical data, lithology and stratigraphy of sections 
can be found in the figures and in Table 1 entitled 
�Carbon isotope data from the upper Silurian rocks of 
East Baltic and Podolia� containing results of all 557 
analyses made for this study. A great majority of these 
δ13C values are depicted in Figures 3�7. Table 1 is 
available online at http://www.eap.ee/earthsciences. All 
localities are shown in Fig. 1. 
 
Podolia 
Kotuzhiny core 
 
The δ13C curve of the Kotuzhiny core (Fig. 3 and 
Table 1) begins with an early Ludfordian plateau of the 
δ13C values (around 0�) in the Grinchuk Fm. Such a 
dating is based on lithostratigraphy and similarity to the 
curve with the same plateau of values that was observed 
earlier in the Dniester outcrops just below the mid-
Ludfordian positive excursion (Kaljo et al. 2007). How-
ever, the mid-Ludfordian excursion itself is missing in 
the Isakivtsy Fm and lower Prygorodok Fm of the core. 
Instead there occurs a negative shift, which is followed 
by a much larger negative excursion (called here the 
post-Prygorodok low; Fig. 3) embracing the upper half 
of the Prygorodok Fm and the first dolomite bed of the 
lower Varnytsya Fm. A maximum negative value of the 
low (� 5�) was measured within that bed. The biostrati-
graphical data available from the core section are too 
poor for precise dating of the negative excursion, but it 
seems obvious that the upper Isakivtsy Fm and the lower 
Prygorodok Fm (which elsewhere contain a major δ13C 
excursion) are not represented due to a gap. The following 
intercalation of dolomitic and gypsum-bearing rocks 
demonstrates a highly variable negative δ13C curve that 
in its lower part might be referred to the uppermost 
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Ludlow (see the �Discussion� section). However, the 
current position of the lower boundary of the Přídolí, 
here tentatively identified on the basis of lithologies, is 
not confirmed either bio- and chemostratigraphically. 

Higher in the section the δ13C trend shows two 
�plateaus� (based on a median trendline) of values. The 

lower �plateau� in the Varnytsya Fm comprises highly 
variable values, mostly between � 1� and � 3� (mean 
value for the �plateau� is � 1.8�). In the higher �plateau�, 
in the Trubchyn Fm, the values become more stable 
around 0 with a mean of � 0.3�, except in a few samples 
towards the top of the formation (Fig. 3). In these last 

 

 
 

Fig. 3. Carbon isotope trend in the Kotuzhiny drill core: log and lithostratigraphy by V. Grytsenko and L. Konstantinenko
(Geological Institute, National Academy of Sciences, Ukraine). For explanations see text. Abbreviations: Devon. � Devonian;
Lochk. � Lochkovian; Khudy. � Khudykivtsy; Isakiv. � Isakivtsy. Grey belts mark isotope events, the striped belt is a questionable
part of the SIDE. 
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samples a new δ13C excursion begins with the highest 
value of 4.5� in the lowermost Dzvenygorod Fm. The 
falling limb of this excursion is rather steep and warrants 
attention. The following new recovery of the trend is 
rather variable, but shows a steady increase in the running 
mean values from about 0.3� to 1.6� just below the 
next more distinct shift (of 2.8�) in the lowermost 
Devonian (Khudykivtsy Fm). An approximate distance 
between these two peaks (measured roughly between 
medians of the peaks) corresponds to the thickness of 
the Dzvenygorod Fm, i.e. about 30 m in this section. 
However, the exact beginning of the excursion at the 
S/D in the Kotuzhiny core remains somewhat debatable 

(see �Discussion� below) because of the rising values of 
the δ13C curve in the uppermost Silurian. 
 
Dniester outcrops 
 
The sampling for the δ13C analyses was performed at the 
Isakivtsy-45, Okopy-46, Trubchyn-65, Dzvenygorod-West 
(located slightly west of Dzvenygorod; GPS: 48°32.471′N; 
26°16.224′E) and Dnistrove-West (= Volkovtsy) outcrops. 
The last outcrop was recently studied also by Malkowski 
et al. (2009) (for comparisons see the �Discussion� section). 

The new data set (Figs 4, 5 and Table 1) begins  
with the mid-Ludfordian excursion (6�) in the lower 

 

 
 

Fig. 4. Upper Ludlow and lower Přídolí δ13C curves from the Dniester area. Log and lithostratigraphy from Tsegelnyuk et al.
(1983). Note sampling gaps in the upper Prygorodok and within the Varnytsya Fms. For explanations see text. 
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Prygorodok Fm in the Isakivtsy-45 section (Fig. 4)  
and ranges upwards through the Varnytsya, Trubchyn  
and Dzvenygorod Fms, i.e. the entire Přídolí Series. 
Unfortunately there are three sampling gaps. The first 
one, embracing the upper Prygorodok Fm, is really 
significant, because it overshadows a transition from 
Ludlow to Přídolí (note the sampling gap in the bottom 
of the Okopy-46 section, Fig. 4). The other two (in  
the middle parts of the Varnytsya and Trubchyn Fms) 

seem not so disturbing thanks to data available from 
the Kotuzhiny core. 

The carbon isotope data obtained from the Isakivtsy 
section (Fig. 4) display well the wide peak of the mid-
Ludfordian excursion with its typically steep rising limb, 
occurring entirely within the limits of the Prygorodok Fm. 
This is at least half the formation higher than we 
expected on the basis of our earlier observations in  
the Dniester area (Kaljo et al. 2007), where the peak 

 

 
 

Fig. 5. Upper Přídolí δ13C curves from the Dniester area. Log and lithostratigraphy from Tsegelnyuk et al. (1983). For legend see
Figs 2 and 4. 
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values of the mid-Ludfordian excursion were reached 
in the top of the Isakivtsy Fm or in the base of the 
overlying Prygorodok Fm. Surely this excursion cannot  
be diachronous; more likely such could be the litho-
stratigraphical boundary or, even more likely, we can 
have here a dating error due to extreme muddy conditions 
of field work in a rainy June of 2010. Anyway, the peak 
is followed by a sampling gap (above the C2 bentonite, 
Fig. 4) embracing the upper Ludfordian part of the 
Prygorodok Fm. 

The δ13C values identified through most of the 
Přídolí are generally low (close to 0�) with a negative 
excursion (down to � 3� in the lower Varnytsya Fm in 
the Okopy section, Fig. 4) and two positive excursions 
in the upper part of the succession. A minor peak 
(1.9�) occurs (Fig. 5) close to the junction of the 
Trubchyn and Dzvenygorod Fms and a more prominent 
peak (3.8�) ca 30 m higher (depending on the thickness 
of the Dzvenygorod Fm) at the S/D, which in the 
Dnistrove-West section is marked by the first appearance 
of Monograptus uniformis. As in the Kotuzhiny core, 
the carbon isotope excursion clearly begins within the 
upper Dzvenygorod Fm and has a rather long (ca 10 m) 
and steadily rising slope before the peak (Fig. 5). 

In addition to the samples discussed above, we 
analysed 12 palaeontological samples collected previously 
from the Dzvenygorod-47 (= Zvenigorod-47 of Tsegelnyuk 
et al. 1983) locality where the ca 20 m boundary interval 
of the Trubchyn and Dzvenygorod Fms crops out.  
These samples were not exactly dated, but we were 
interested to see if the late Přídolí excursion is 
traceable also by random analysis. The result was 
positive � besides values typical of this interval  
(� 1.5� to + 0.9�), two analyses gave the values 
1.7� and 2.3� indicating the late Přídolí excursion. 
The latter is a peak value for this excursion in the 
Dniester area, but we cannot be sure about its exact 
place in the section. 

Although the minor and major peaks have changed 
positions, their occurrence in the Dniester area confirms 
the findings in the Kotuzhiny core. The late Přídolí 
excursion was documented for the first time in Podolia. 
Biostratigraphically it is dated in the Dniester outcrops 
by the first appearance of new brachiopod (Delthyris 
magna, Isorthis ovalis), ostracode (Kloedenia aff. 
leptosoma), trilobite (Calymene dnestroviana) etc. 
associations (Gritsenko et al. 1999). The position of the 
S/D is well marked by the occurrences of Monograptus 
uniformis and Icriodus woschmidti in the Dnistrove-
West section (Fig. 5), as well as by different fossils  
in several outcrops of the same age (Nikiforova & 
Predtechensky 1972; Tsegelnyuk et al. 1983; Abushik et 
al. 1985; Koren et al. 1989; Gritsenko et al. 1999). 

East  Baltic 
Vidukle core 
 
The late Silurian δ13C trend is best seen and dated in the 
Vidukle-61 core (Fig. 6, Table 1), the Wenlock and 
Ludlow chemostratigraphy of which was described by 
Martma et al. (2005). The following intervals could be 
noted above the mid-Ludfordian peak (local stratigraphy 
in Fig. 2). The Ventspils Fm shows a rather unstable 
trend with two minor positive shifts at the bottom (1.4�
1.7�) and in the upper part (0.8�). The Minija Fm is 
divided into two nearly equal parts: a wide negative 
excursion of δ13C values (reaching � 1.5�) in the lower 
part (provisionally we call it the �ilale low) and a wide 
slightly rising plateau of values beginning some 10 m 
higher in the Varniai Beds. Within the Minija Fm the 
values remain mostly just below 0�, in the Jura Fm,  
up to the middle of the Kelme Beds, mostly just above 
0�. The δ13C trend ends in the Vidukle core with two 
minor excursions � the first in the upper Kelme Beds 
(max value 1.3�) and the other 15�20 m higher at the 
S/D (in the Rietavas Beds 1.3� and in the Til�e Fm 
1.6�, see also the Discussion section). The most important 
biostratigraphical information is presented in Fig. 6, 
especially occurrences of Ozarkodina crispa in the 
Ventspils Fm and O. remscheidensis in the upper Jura Fm, 
defining the positions of the both minor carbon isotope 
excursions reported above. 
 
�e�uvis and Ventspils cores 
 
The �e�uvis curve (embracing the succession beginning 
with the uppermost part of the Minija Fm) was analysed 
to check the results from the upper Přídolí in the Vidukle 
core. As is obvious from Fig. 6, both δ13C curves are in 
general rather similar � they show a long plateau in the 
main part of the upper Minija and Jura Fms and slightly 
raised values in the uppermost part of the latter. 
Differences are observed only in some details, partly 
caused by insufficient sampling. A general difference  
is that the δ13C values in the �e�uvis curve are at  
least 0.5� lower than those in the Vidukle curve (see 
Table 1) which is in harmony with the known pattern 
(discussed in the last chapter). 

The Ventspils δ13C curve was first published by 
Kaljo et al. (1998). Its mid-Ludfordian excursion and 
two minor shifts in the Ventspils Fm repeat well the 
trend known from the Vidukle core (Martma et al. 
2005), but the trend through the Přídolí is highly 
monotonous up to the very end of the Silurian (Fig. 6). 
The values remain close to 0�, most of them on the 
negative side. Only the last sample from the Til�e Fm 
shows a rising trend (1.7�). The negative values in the 
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Fig. 6. Correlation of the Vidukle, �e�uvis and Ventspils δ13C curves between the mid-Ludfordian and the Silurian�Devonian
boundary (SIDE) excursions. Conodont information in Vidukle and �e�uvis is from Brazauskas (1993) and in Ventspils from
Viira (1999, 2000). Note that binary nomenclature is used for economy of space. Chitinozoan data from Nestor (2011). The steady
line shows continual occurrences, the broken line with x � single occurrences. Number 274 in the Ventspils part means that
S. filifera continues up to this depth. 
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lower Minija Fm could represent some similarity with 
the �ilale low in the Vidukle core and elsewhere. The 
Ventspils section is well studied biostratigraphically 
(Gailite et al. 1987; Märss 1986, 1997; Viira 1999, 
2000; Nestor 2009, 2011), but the δ13C curve shows only 
parts of expected excursions. Despite of that correlation of 
sections within the Targale�Jura Fm is rather complicated 
and some additional biostratigraphical work is needed for 
more firm conclusions. Still, the facies position of the 
Ventspils drilling site is clearly shallower than that of the 
Vidukle site and some gaps could occur in the upper  
part, in the Garzde Beds in particular. This might be an 
explanation, but having Oulodus detorta in the Venzava 
Beds, it keeps a possible gap (and assumed excursion) 
very high in the Přídolí (cf. Viira 2000). 
 
Ohesaare core, outcrop sections at Ohesaare and Loode 
 
Ohesaare was the first drill core studied for carbon 
isotopes by the Tallinn team (Kaljo et al. 1997), but the 
Ohesaare Stage was not cored. A major δ13C excursion 
was revealed in the upper Homerian, a negative one at 
the Wenlock�Ludlow boundary (known also in Wales, 
Corfield et al. 1992), and two gaps were detected  
in the Ludlow, among them one omitting the mid-
Ludfordian excursion. Still, two minor shifts that could 
be called the top-Ludfordian or Ventspils twins are well 
expressed in the Kuressaare Fm (Fig. 7). The lower 
Přídolí �ilale low is also easily recognizable in the 
Kaugatuma Fm. New data from the Ohesaare stratotypic 
cliff section and a small exposure at Loode do not report 
anything new but complement the chemostratigraphic 
interpretation of the composite Ohesaare δ13C curve 
(Fig. 7) with its wealth of biostratigraphical data (see 
references concerning the Ventspils section above; also, 
e.g. Sarv 1982). Values typical of the Přídolí low, 
measured in the cliff section and in the Loode outcrop, 
have an upward rising trend analogous to that in the 
Kotuzhiny core above the late Přídolí excursion. Based 
on this similarity, we locate the Ohesaare cliff in the 
composite section slightly above that excursion (Fig. 2). 
Biostratigraphical and chemostratigraphical correlations 
with the Ventspils curve (Fig. 6) seem relatively easy, 
but face the same difficulties as noted at this section. 
 
 
DISCUSSION 
The  Ludlow  carbon  isotope  trend  above  the  mid-
Ludfordian  excursion 
 
The uppermost Ludfordian in the East Baltic comprises 
the Kuressaare (a gap underlies it in parts of SW Estonia), 
Ventspils and part of the Pagegiai Fms (listed in the order 
of increasing water depth, Fig. 2), containing rather rich 

 
 

Fig. 7. Ludlow and Přídolí δ13C curve from the Ohesaare drill 
core, Ohesaare cliff section and Loode outcrop south of the 
cliff on the Sõrve Peninsula. Note that calcareous siltstone 
beds in the top of the cliff and in the bottom of the outcrop  
are very similar. Conodont data from Viira (1999, 2000), 
chitinozoans from Nestor (2011) and vertebrates from  
Märss (1986). 
 
 
and distinctive shelly and microfaunal assemblages (see 
also Gailite et al. 1987). For example, those of the 
ostracodes Plicibeyrichia numerosa�Undulirete baltica 
(Sarv 1982; Gailite 1986); the thelodont Thelodus 
sculptilis (Märss 1997); the conodont Ozarkodina crispa 
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(Brazauskas 1993; Viira 1999); and the chitinozoan 
Eisenackitina barrandei (Nestor 2009). This interval 
has not attracted much attention in chemostratigraphy, 
although its position just above the mid-Ludfordian 
excursion is well defined. Moreover, a new revision of 
the East Baltic curves from this interval has revealed 
(Figs 6, 7) a variable δ13C curve with two minor positive 
excursions. These top-Ludfordian carbon isotope twin 
peaks located within the Kuressaare�Ventspils interval 
just above the mid-Ludfordian excursion are rather 
specific in the actual context of the general carbon 
isotope trend and as such deserves to be identified as a 
separate chemostratigraphic unit. 

Unfortunately the corresponding interval in Podolia 
(upper part of the Prygorodok Fm) was insufficiently 
sampled in the Dniester outcrops (Fig. 4) and the above 
pattern was not traced. In the Kotuzhiny core (Fig. 3) 
the Prygorodok�Varnytsya transition, where the mid-
Ludfordian peak is missing, seems significantly affected 
by specific shallow-water conditions (occurrence of 
gypsum) that have resulted in the negative post-
Prygorodok δ13C excursion (� 5�). Another explanation 
might be that the above low should be considered wider 
� falling between a small positive shift in the lower 
Prygorodok Fm (depth 225 m, 0.3�) and the one (depth 
201 m, 1.1�) just below a metabentonite interbed in the 
lowermost Varnytsya Fm (Fig. 4). This guess is based 
on the similarity of general configuration of the isotope 
curve in the Kotuzhiny and Ventspils cores above the 
mid-Ludfordian excursion (Fig. 6). The Kotuzhiny core 
provides also a good possibility for testing this suggestion 
� sanidine and other XRF analyses (Kiipli et al. 2008) 
should define whether the bentonite bed mentioned is 
No. 6 (at the Prygorodok�Varnytsya boundary) or No. 7 
occurring slightly higher. Such a test will be performed 
as soon as possible. 

On the other hand, the Okopy isotope curve (Fig. 4) 
shows a negative excursion at the bottom of the 
Varnytsya Fm and in this respect is similar to the 
Kotuzhiny curve � perhaps the �top-Ludfordian� twin 
peak excursion is in the lower Varnytsya Fm of the 
Okopy-46 section. Some similarities of the trend could 
be seen even in the Vidukle core, where at the bottom of 
the Minija Fm the �ilale low is trending in the same 
way. Those observations make the interpretation of the 
Prygorodok�Varnytsya transition in the Kotuzhiny core 
highly doubtful and it is possible that there are two 
successive negative excursions of different origin. 
 
Parameters  of  the  Přídolí  excursions 
 
The late Přídolí excursion was first described by Kaljo 
et al. (2009) in the Kotuzhiny core (Fig. 3). The δ13C 
value 4.5� measured at the junction of the Trubchyn 

and Dzvenygorod Fms remains the highest among those 
obtained from the samples analysed for checking the 
same level in the Dniester area outcrops (Fig. 5; max 
value 2.3�) and in Lithuania, in the Kelme Beds of the 
Minija Fm (Fig. 6; max value 1.5�). The corresponding 
rocks analysed in the Kotuzhiny core represented the 
shallow to open shelf, and the Lithuanian ones deep 
shelf facies. Rock samples of the Dniester area are 
somewhere in between, but closer to the deep shelf. A 
pattern of decreasing values from inshore to open sea 
area is obvious and expected based on earlier Silurian 
experience (see the next section). 

The carbon isotope excursion at the S/D seems to 
demonstrate the same pattern as above. The following 
values were recorded: Kotuzhiny core 2.8�, Dniester 
outcrops (Fig. 5) max value 3.8� (from Dnistrove-
West also data by Malkowski et al. 2009 max δ13Ccarb 
value 4.1�, δ13Cbrach 4.5�) and Lithuanian cores � 
max 1.6� just below the S/D in the Rietavas Beds 
(Fig. 6, �e�uvis) and above it in the Til�e Beds in the 
Vidukle core. Two aspects are surprising here. The first 
is the only ca 0.5� difference of values measured from 
bulk-rock and brachiopod valves. Baltic Ordovician and 
Silurian data have shown a much greater difference  
(e.g. 2.3�3.3� in the Stirnas core, Hints et al. 2010). 
Another unexpected result is the relatively low value  
in the Kotuzhiny core, which, according to the trend 
highlighted above, as the shallowest locality should 
have the highest δ13Ccarb values. 

The carbon isotope excursion at the S/D has been 
named differently. Several authors use the above long 
name, which is surely an exact, but a rather long 
expression. Some have taken the Klonk Bioevent as a 
basis and formed a new term � the Klonk isotope event 
and/or excursion (Buggisch & Joachimski 2006). Such a 
method of naming δ13C excursions has been in use in 
the Silurian, but some discords or inaccuracies have 
lessened this practice (Kaljo et al. 2003; Loydell 2007). 
The names based on stratigraphy are more rational and 
if these are not too long, we prefer this method. In the 
case of longer names Bergström et al. (2006) suggested 
HICE and similar terms that are rather convenient for 
use. Applying this model, we suggest to use �the positive 
δ13C excursion at the Silurian�Devonian boundary� or 
�the SIDE excursion� in acronym form. 
 
The  shape  of  the  studied  carbon  isotope  excursions 
 
The general shape of the Přídolí δ13C curve, especially 
that of the two positive excursions of the Kotuzhiny 
section, is rather different from those of the Dniester 
outcrops and also the Lithuanian ones. The Kotuzhiny 
curve has rapidly rising peaks with steep slopes and 
excursions are therefore easy to define. The same 
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excursions in the Dniester sections are of considerably 
smoother configuration with long slowly rising (or 
falling) slopes and lower peak values. Therefore the 
Dniester excursions are much less distinct. This may 
become a problem when one wishes to use the carbon 
isotope signal as a correlation marker. 

As mentioned above, the Kotuzhiny core represents 
shallow-water facies conditions even if the Podolian 
basin experienced a deepening episode during the late 
Přídolí. The presence of lower δ13C values in deeper-
water facies is a well-known pattern discussed in several 
papers (e.g. in the early Wenlock by Kaljo et al. 1998; 
Munnecke et al. 2003; Loydell 2007), even if not fully 
understood, but the steep slopes of excursions in near-
shore facies seem to be of different origin. Many high 
peaks are linked to shallow-water rocks or mark wider 
eustatic events, e.g. the mid-Ludfordian excursion 
(Wigforss-Lange 1999; Martma et al. 2005; Munnecke 
et al. 2010). However, this huge excursion may be 
missing in the section due to a gap created by too deep 
regression of the shoreline, e.g. in the Ohesaare core in 
Estonia (Kaljo et al. 1997) and in the Kotuzhiny core, 
described here. It is logical to think that sea level 
oscillations in the nearshore area, causing big gaps in 
sections that eliminate long intervals of δ13C curves, can 
also modify the peak configuration by making it steeper. 

From this point of view smooth carbon isotope 
curves (like the Dniester and Lithuanian ones) should be 
considered to be the most continuous, with a good 
chance of providing a full account of a global (or 
smaller) carbon isotope event. Steep-sided peaks are  
or might be in this sense less representative, though 
more distinctly limited. Correlation of the boundaries of 
different types of peaks seems complicated, but some 
details of the curve may be helpful. 
 
General  pattern  and  peaks  of  the  Přídolí  δ13C  
curve  extending  into  the  Devonian 
 
The previous paragraphs highlighted the main charac-
teristics of the carbon isotope trend through the Přídolí 
of Podolia and the East Baltic area. In order to get a 
clear idea about the most common aspects, these are 
summarized here. 

In Podolia (Figs 3�5) the δ13C trend begins with a 
post-Prygorodok deep low of values, which apparently 
marks a gap and may be complicated by a smaller 
negative excursion at the bottom of the Varnytsya Fm. 
The following two thirds of the Přídolí shows a long 
line of variable but generally low values. Considering 
the trendline, it can be described as a two-stepped rising 
plateau of low values through the Varnytsya (mean  
� 1.8� in Kotuzhiny) and Trubchyn (� 0.3�) Fms. The 
upper third of the section displays two solid peaks: the 

first at the junction of the Trubchyn and Dzvenygorod 
Fms and the second at the top of the latter formation, 
continuing into the Devonian (Fig. 5). New data from 
the Dniester basin show that the upper Přídolí δ13C 
peaks are considerably lower (~ 2�) in deeper-water 
settings than in the shallower Kotuzhiny area. 

Baltic data reveal very much the same situation.  
The lower Přídolí (Kaugatuma, Minija and lower 
Jura/Targale Fms) shows mostly a stable plateau-like 
trend of values varying within 0.5�1� and having an 
upward rising trend. The �ilale low (near to � 1�) 
occurs in the lowermost part. Values are higher in  
the upper Minija Fm and slightly higher also in the 
Jura/Targale Fms, but still remain close to 0�. Two 
minor excursions occur in the uppermost Přídolí (upper 
Jura Fm) � one in the Kelme Beds and another at the top 
of the Jura Fm (see a comment at the very end of this 
chapter), continuing into the bottom of the Til�e Fm and 
so marking the S/D. 

Summarizing these new data from the Přídolí of the 
East Baltic and Podolia, despite some local differences 
in values and trends, it is possible to define the general 
pattern of carbon isotope changes. This process was 
rather stable (partly variable but low-level values were 
close to 0� or below) during most of the first two 
thirds of Přídolí time. Two minor to medium-size 
(exceptionally major) positive δ13C excursions followed 
at the beginning and top of the late Přídolí with a 
continuation into the Devonian, evidencing that the 
carbon cyclic development had become labile again by 
the end of the Silurian Period. 

Such a pattern of carbon isotope changes in the 
Přídolí � a secular beginning and a brief cyclic end �  
is in principle similar (when not considering time 
differences) to analogous processes in the Ordovician 
and earlier Silurian. The duration of the Přídolí was 
usually given as 2 Ma, nowadays 2.7 Ma (International 
Stratigraphic chart 2010 available on the IUGS ICS 
website) which is a rather short time interval, commonly 
more suitable for a stage. In shallow and mid-shelf 
areas (SW Estonia, Podolia) the thickness of the Přídolí 
rocks remains below 150 m, whereas deep shelf rocks 
are 250 m and more thick in SW Lithuania in the limits 
of the Baltic�Polish depression and even 500 m close to 
Kaliningrad (Pa�kevičius 1997). The last figures are 
reliable and allow recognition also of some smaller 
details on the isotope curve, which are hardly visible in 
the case of condensation of a section. 

These remarks were needed in order to introduce 
another aspect of Přídolí chemostratigraphy. Figure 5 
demonstrates a relatively long stratigraphical distance 
between the late Přídolí and SIDE excursions in the 
Dniester outcrops, even if defining the exact boundary 
level may be problematic. In the Kotuzhiny core (Fig. 3) 
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the lower boundary of the SIDE is even more debatable 
and the stratigraphical difference might be even smaller. 
And finally, in Lithuanian sections (Fig. 6) the distance 
between the two named excursions is nearly missing or, 
more correctly said, overshadowed to such an extent 
that it might be better to treat them as one wide excursion 
embracing the latest Přídolí and earliest Lochkovian.  
This seems a good idea, when one is studying only the 
Vidukle and �e�uvis trends, but having seen the Podolian 
sections with the separately placed late Přídolí and 
SIDE excursions, we prefer to keep them apart and  
to look for explanations of their proximity in some 
sections. 
 
Some  correlations  within  the  western  margins  of  
Baltica 
 
The main idea of including chemostratigraphic time 
lines in Fig. 2 was to demonstrate the possible use of 
δ13C correlation of detailed time slices or datum planes. 
Our data show that this method can work well in the 
upper Ludlow and Přídolí. However, this correlation 
chart is far from being exact, e.g., concerning the positions 
of some Baltic unit boundaries (the topmost ones in 
particular) as related to those of graptolite biozones, the 
position and extent of gaps, the age of the Sundre Beds, 
etc. Biostratigraphy should be widely applied to get  
a trustworthy chart, at least more reliable than was 
possible in our case. 

In terms of the East Baltic Silurian, the late Přídolí 
excursion might occur somewhere at the bottom of  
the Ohesaare Stage, as indicated by biostratigraphical 
correlations of the Dzvenygorod Fm (Abushik 1983; 
Abushik et al. 1985; Kaljo 1987; Koren et al. 1989; 
Nestor 2011). New δ13C data from the Ohesaare cliff 
section (see above) seem to support this conclusion,  
but some additional studies are needed to enhance its 
reliability. 

�igaite et al. (2010) observed an interesting δ18O 
shift (� 19.2�) in the Geluva-99 core (location in 
Fig. 1) at the junction of the Vievis and Lapes Fms  
of Lithuania. It is not yet clear how this might be 
correlated with the δ13C excursion discussed here, but 
some considerations could be noted. Several earlier 
authors described a parallel development of carbon  
and oxygen isotope curves (Samtleben et al. 1996; 
Brenchley et al. 2003), but opposite statements are also 
common and wider analysis shows that both scenarios 
are possible (Munnecke et al. 2010). So, a positive δ13C 
shift might (but should not) be expected. 

According to common views (Pa�kevičius et al. 
1994; Pa�kevičius 1997), the Vievis and Lapes Fms 
occupy in the Přídolí correlation charts the same 
position in the shallow shelf area in central Lithuania as 

do the Minija and Jura Fms in deeper environments in 
the west. Their boundaries are considered to coincide; 
only the uppermost Silurian beds are missing at the top 
of the Lapes Fm (Karatajute-Talimaa & Brazauskas 
1994). Based on this correlation, we should conclude 
that the δ18O shift described by �igaite et al. (2010) 
cannot be linked to the late Přídolí δ13C excursion 
identified high in the Jura Fm (Kelme Beds). This 
conclusion is supported by conodont occurrences 
recognized in the Vidukle and �e�uvis cores (Fig. 6) � 
the excursion in the Kelme Beds occurs within the 
Ozarkodina remscheidensis Biozone, not clearly below 
it as does the oxygen excursion in the Geluva-99 core. 
Lower down, including the Minija�Jura boundary 
interval, the δ13C curve is variable but low-level plateau-
like in the named west Lithuanian core sections, making 
it impossible to identify any small variation that could 
be connected with an oxygen isotope shift. 
 
Correlations  with  excursions  observed  elsewhere  
and  possible  links  to  some  environmental  agents 
 
Beginning with papers by Andrew et al. (1994) from 
Australia and by Schönlaub et al. (1994) from Europe, a 
medium to major δ13C excursion at the S/D (here named 
the SIDE) became well known from several areas of the 
world, in particular those of Europe (Hladíková et al. 
1997; Buggisch & Joachimski 2006; Malkowski et al. 
2009) and North America (Saltzman 2002; Kleffner et al. 
2009). Even such a limited list of selected publications 
indicates that the SIDE is a global event occurring exactly 
at a major chronostratigraphic boundary and testifying to 
the isochroneity of this boundary but also that it is itself 
isochronous as proved by biostratigraphy. In general terms 
the results are trustworthy, and only a couple of details 
should be noted below, but it would be more important  
to ask why such a global event in carbon cycling occurred  
at a level at which a biozonal index graptolite species 
appeared (www.stratigraphy.org/GSSPs). 

Some of the authors mentioned above answer this 
question in a manner referred to below, but still having 
in mind only their own object of study. For example, 
having studied the S/D stratotype (GSSP) section at 
Klonk in the Barrandian (Czech Republic), Hladíková et 
al. (1997) compiled a detailed δ13C curve for the 12.5 m 
interval of transitional beds from the uppermost Přídolí 
to the lower Lochkovian. The values increased up to 
2.4� in bed No. 19 just below the GSSP level (bed 
No. 20) in the Přídolí part of the excursion, a maximum 
(3.6�) was reached ca 7 m higher in the Devonian, but 
the falling limb was not reached. The authors suggest 
that this δ13C excursion was caused by a combination of 
higher productivity, increased deposition of organic matter 
and shallowing of the basin (Hladíková et al. 1997). 
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Saltzman (2002) discussed three δ13C curves from 
North America representing the sections in the central 
Appalachian Mountains (West Virginia), Great Basin 
(Nevada) and the Mid-continent (Oklahoma). In Virginia 
a much thicker interval of Silurian�Devonian transition 
was studied; thus a rather wide excursion occupies 
ca 50 m of the section. The peak value (5.1�) is reached 
ca 10 m below the S/D. In Nevada the excursion ranges 
for ca 40 + m (upper part is covered), and the peak value 
is reached ca 10 m above the S/D level. The Oklahoma 
curve is partly truncated (Saltzman 2002) and therefore 
not discussed here. In all cases the S/D position is well 
constrained by occurrences of Icriodus woschmidti, the 
Ozarkodina remscheidensis group and Monograptus 
uniformis. Saltzman (2002) links seawater δ13C enrich-
ment to a eustatic drop during the Silurian�Devonian 
transition, due to enhanced carbonate weathering during 
exposure of platform areas, as well as to an increased 
burial of organic carbon in the same time interval in 
Gondwana basins (Flügel et al. 1977; Hladil 1991). 

Buggisch & Joachimski (2006) discussed the SIDE 
excursion in a general manner, based on data sets from 
the Barrandian and the Carnic Alps (Schönlaub et al. 
1994; Hladíková et al. 1997). They noted a faunal change 
at the S/D and two Scyphocrinites blooming events just 
before it, all of which could be correlated with the major 
SIDE excursion at the boundary. Deposition of organic 
carbon-rich sediments, occurring in the S/D interval, 
took place in deeper shelf settings (Hladil 1992). How-
ever, Buggisch & Joachimski (2006) support those authors 
(Hladíková et al. 1997; Saltzman 2002), indicating a sea 
level low stand for the latest Silurian on Laurentia and 
Baltica, leading to the enhanced erosion of carbonate 
platforms. Summarizing all Silurian�Devonian transition 
and Devonian data, they underline that the combination 
of sea level changes, weathering intensity, nutrient 
supply, organic carbon production and climate is 
assumed to be a driving force of the carbon isotope 
excursions. 

The work by Malkowski et al. (2009) was based on 
the same outcrop at the Dniester River banks as our 
study and some comments were provided above. Here 
we quote only their summarizing statement about 
environmental aspects as follows: �The global biogeo-
chemical perturbation across the Silurian�Devonian 
transition reflects a complex combination of palaeogeo-
graphical, biogeochemical and evolutionary processes  
in the late Caledonian geodynamic setting, with a  
likely undervalued role of the expanding vegetation �� 
(op. cit., p. 674). This point of view is the most general 
one among those presented above and without doubt 
correct. However, turning to more detailed approaches, 
we are obviously rather far from a generally accepted 
understanding of processes of global carbon cycling and 

its driving forces. All mentioned authors list sea level 
dynamics resulting from a complex of environmental 
processes. This is a commonly accepted point of view; 
however, let us test it at the S/D. 

In the text above we quoted several localities where 
a major global δ13C excursion has been established, 
which in most cases begins in the uppermost Silurian 
and continues to some extent into the lowest Devonian 
(see also below). In some areas of Laurentia Saltzman 
(2002) reported a eustatic sea level drop at the S/D.  
In the East Baltic the Přídolí shows a long-lasting step 
by step regression, which most likely is not a eustatic 
process that peaked at the S/D (Nestor & Einasto 1997). 
In Podolia, on the other hand, the second half of the 
Přídolí is transgressive, with maximum flooding noted 
in the lowermost Devonian (Predtechensky et al. 1983). 
The same tendency was well documented in the 
Kotuzhiny core by Kaljo et al. (2009) (Fig. 3) and noted 
also by Skompski et al. (2008). Walliser (1995) dis-
cussed the S/D Event among the Devonian global events 
and classified it as a minor but globally traceable event. 
In the boundary type section (Klonk, Barrandian) the 
S/D lies within a monotonous sequence without any 
serious facies change (Hladil 1992). Still, Walliser (1995) 
mentions several localities of the Bohemian facies realm 
(Carnic Alps, Sardinia, Moroccan Meseta) and European 
Variscides where some lithological changes mark a sea 
level rise. The transgressive beginning of the Devonian 
has been noted also in Australia and SW Siberia. 

The above citations give surprisingly different 
interpretations of the Klonk section, but in general it 
seems that both rise and fall of sea level in the Silurian�
Devonian transition interval are possible. Most likely 
rather different agents cause sea level dynamics.  
Podolia and the East Baltic are good examples of those 
differences. There is no need to explain all events by a 
single agent, but a question remains as to why an event 
is global. 

As to the chronostratigraphic aspect, it was striking 
that there are two types of relations of the δ13C 
excursion with the S/D: one as described by Hladíková 
et al. (1997) at Klonk, where a slowly rising limb of the 
excursion occupies some interval of the Přídolí section 
before passing the boundary level and another, where 
the excursion begins close to the boundary and rises 
very rapidly through the S/D (Saltzman 2002). Our  
data set contains both types: the Vidukle, �e�uvis and 
Dnistrove sections belong to the first type, the Kotuzhiny 
section represents the second one. However, when 
drawing any conclusions we should bear in mind that 
the above types of relations are based on trusting the 
correctness of stratigraphy applied by the authors cited 
above. If the stratigraphy is not reliable, the pattern 
identified above should be revised. 
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Proceeding from a general idea of such chrono-
stratigraphical boundaries (Salvador 1994), we consider 
the first type of relations normal. This trend shows that 
the succession of beds is complete (= entire time 
interval is represented by rocks) at a boundary. In this 
sense the actual trend is complete e.g. at Klonk and 
Vidukle, but not at Kotuzhiny, possibly due to some 
kind of gap. 
 
 
CONCLUSIONS 
 
1. Summarizing the δ13C data from the East Baltic and 

Podolia, we are convinced that an early to middle 
Přídolí �stability� interval and the late Přídolí excursion 
are reliable patterns of the carbon isotope trend on 
the Baltica palaeocontinent. Their wider significance 
awaits confirmation by observations elsewhere, as 
do several excursions in the Llandovery. 

2. The carbon isotope excursion at the Silurian�
Devonian boundary (SIDE) has been traced on 
several continents, now also in Baltica. Although 
this excursion begins either in the uppermost Silurian 
or at the bottom of the Devonian, it can serve as a 
well-dated global chemostratigraphical correlation 
tool. The details and causes of the noted differences 
in the stratigraphical level of this excursion definitely 
need to be clarified. 

3. Carbon isotope chemostratigraphy has proved its 
efficiency when applied together with high-resolution 
biostratigraphy. It helps to overcome ecologically 
(= facies dependence) caused cases of diachroneity 
of fossil occurrences or their absence (so-called barren 
beds). 

4. Having established a series of carbon isotope 
excursions in the Silurian, we can use those seven 
levels as markers for tracing certain time planes 
through different facies belts over the whole basin. 

5. However, at least one difficulty still exists � 
excursions are often linked to sea level low stands, 
meaning that these event levels may be missing in 
certain sections, in peripheral ones in particular. 
In summary, we think that carbon isotope chemo-

stratigraphy may contribute to subdividing the Přídolí 
into stages in the nearest future and that Baltica sensu 
lato seems to be the right place for such a development. 
However, different decisions are possible, but anyway 
an undivided series in the Silurian stratigraphy needs 
reconsideration. 
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Süsinikisotoopide  suhte  arengutrend  Pridolis  ja  Ülem-Siluri  ning  Devoni  alguse  
kemostratigraafia  Podoolia  (Ukraina)  ja  Baltikumi  andmetel 

 
Dimitri Kaljo, Tõnu Martma, Volodymyr Grytsenko, Antanas Brazauskas ja Donatas Kaminskas 

 
Seni maailmas äärmiselt vähe uuritud Pridoli süsinikisotoopide suhte arengutrendi selgitamiseks uuriti Podoolias viit 
Dnestri jõe paljandit ja Kotuzhiny puursüdamikku ning nelja puurläbilõiget (Vidukle, �e�uvis, Ventspils, Ohesaare) 
Baltimaades. Neile lisaks ka Ohesaare ja Loode pangal avanevaid kivimeid. Kindla seose tagamiseks varasemate 
uurimustega alustati Kesk-Ludfordi suurest hälbest, hõlmati kogu Pridol ja ka Devoni allosa, mida markeerib varem 
tuntud Siluri�Devoni piiril olev δ13C hälve (akronüümina SIDE). Uued andmed näitavad väikest positiivset kaksikhälvet 
Hilis-Ludfordis (kõrgeimad väärtused 0,8�1,7�), Pridol algab madala negatiivse trendiga, millele järgneb suhteliselt 
stabiilne madalate δ13C väärtustega intervall, mis hõlmab umbes 2/3 ladestiku mahust. Ülem-Pridol algab keskmise 
suurusega hälbega (2,3�4,5�), milles δ13C suurus on sõltuv kivimi tekkekoha veesügavusest. Sama reeglipära on 
jälgitav ka SIDE hälbe puhul: sügavaveelistes kivimites on väärtus väikseim (1,6�), madalamerelistes suurem (3,8�) 
ja käsijalgsete kaantes veelgi enam (4,5�). SIDE on jälgitud enamikul praeguse maailma kontinentidel ja sellisena 
on see kujunenud geoloogias oluliseks kronostratigraafiliseks tööriistaks. Ülem-Pridoli hälbe väärtus jääb ootama kin-
nitust teistelt aladelt. Uuritud süsiniku isotoophälvete kuju võimaldab otsustada läbilõigete täielikkuse üle. Uurimis-
tulemused näitavad, et Baltika mandri lääneosa geoloogiliste läbilõigete hea biostratigraafiline tagapõhi koos isotoop-
andmetega annab Pridoli ladestiku liigestamiseks senisest parema võimaluse. 
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Sample 

No. 
Formation Distance from  

the bottom, 
m 

δ13C, 
� 

Isakivtsy-45  section 
1 Prygorodok 0.0 0.1 
2 Prygorodok 0.5 0.3 
3 Prygorodok 1.5 1.0 
4 Prygorodok 2.5 2.1 
5 Prygorodok 3.5 4.3 
6 Prygorodok 5.5 4.6 
7 Prygorodok 6.3 3.6 
8 Prygorodok 7.3 5.7 
9 Prygorodok 8.3 5.8 
10 Prygorodok 9.9 6.0 
11 Prygorodok 10.9 4.6 
12 Prygorodok 11.9 3.6 
13 Prygorodok 12.9 1.7 
14 Prygorodok 14.4 0.2 

Okopy-46  section 
1 Prygorodok 0.0 0.3 
2 Varnytsya 5.0 � 0.8 
3 Varnytsya 5.8 � 3.0 
4 Varnytsya 6.5 � 1.0 
5 Varnytsya 7.0 � 1.5 
6 Varnytsya 8.0 � 2.0 
7 Varnytsya 9.0 0.3 
8 Varnytsya 9.9 0.5 
9 Varnytsya 10.9 0.8 
10 Varnytsya 11.9 0.8 
11 Varnytsya 13.9 0.5 
12 Varnytsya 14.9 0.2 
13 Varnytsya 15.9 0.3 
14 Varnytsya 19.9 � 0.4 
15 Varnytsya 20.9 0.0 
16 Varnytsya 21.9 � 0.2 
17 Varnytsya 22.9 0.1 
18 Varnytsya 23.9 � 0.2 
19 Varnytsya 24.9 � 4.1 
20 Varnytsya 25.9 � 4.0 
21 Varnytsya 26.9 � 1.8 

Trubchyn-65  section 
1 Varnytsya 0.0 � 2.8 
2 Varnytsya 1.0 � 2.1 
3 Varnytsya 2.0 � 3.2 
4 Varnytsya 3.0 � 4.2 
5 Varnytsya 4.0 � 2.7 
6 Varnytsya 5.0 � 2.1 
7 Varnytsya 6.0 � 2.9 
8 Varnytsya 8.0 � 1.4 
9 Varnytsya 9.0 � 2.4 
10 Varnytsya 10.0 � 0.9 
11 Varnytsya 11.0 � 0.6 
12 Varnytsya 12.0 � 0.3 
13 Varnytsya 13.0 � 0.2 
14 Varnytsya 14.5 � 0.7 
15 Varnytsya 15.3 � 1.0 

 
 
 
Sample

No. 
Formation Distance from  

the bottom, 
m 

δ13C, 
� 

16 Varnytsya 16.3 0.3 
17 Varnytsya 17.3 0.1 
18 Varnytsya 18.3 � 1.1 
19 Varnytsya 19.3 0.0 
20 Varnytsya 20.3 0.2 
21 Varnytsya 21.3 0.7 
22 Varnytsya 22.3 0.0 
23 Trubchyn 23.3 0.2 
24 Trubchyn 24.3 0.3 
25 Trubchyn 25.3 0.4 
26 Trubchyn 27.3 0.6 
27 Trubchyn 28.3 � 4.4 

Dnistrove-West  section 
1 Trubchyn 0.0 1.0 
2 Trubchyn 1.0 0.6 
3 Trubchyn 2.0 0.6 
4 Trubchyn 3.0 0.3 
5 Trubchyn 4.0 0.4 
6 Trubchyn 5.0 0.3 
7 Trubchyn 6.0 0.0 
8 Trubchyn 7.0 0.5 
9 Trubchyn 8.0 0.7 
10 Dzvenygorod 10.5 1.5 
11 Dzvenygorod 14.0 � 0.7 
12 Dzvenygorod 14.8 � 1.2 
13 Dzvenygorod 17.6 � 0.1 
14 Dzvenygorod 18.6 � 0.1 
15 Dzvenygorod 19.6 � 0.3 
16 Dzvenygorod 20.6 � 0.5 
17 Dzvenygorod 21.4 � 0.7 
18 Dzvenygorod 22.4 � 0.3 
19 Dzvenygorod 23.4 � 0.3 
20 Dzvenygorod 24.4 0.2 
21 Dzvenygorod 25.4 � 0.2 
22 Dzvenygorod 27.4 0.3 
23 Dzvenygorod 28.4 0.5 
24 Dzvenygorod 28.9 0.8 
25 Dzvenygorod 29.7 1.3 
26 Dzvenygorod 30.7 1.7 
27 Dzvenygorod 31.7 1.4 
28 Dzvenygorod 32.5 1.9 
29 Dzvenygorod 33.5 1.7 
30 Dzvenygorod 34.5 2.1 
31 Dzvenygorod 35.5 3.1 
32 Khudykivtsy 38.5 3.9 
33 Khudykivtsy 39.6 3.8 
34 Khudykivtsy 40.6 3.6 
35 Khudykivtsy 41.6 3.8 
36 Khudykivtsy 42.6 3.1 
37 Khudykivtsy 43.6 3.0 
38 Khudykivtsy 44.6 3.1 
39 Khudykivtsy 45.6 3.4 
40 Khudykivtsy 46.6 3.7 

Table 1. Carbon isotope data from the upper Silurian rocks of the East Baltic and Podolia (available online) 
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Sample 
No. 

Formation Distance from  
the top, 

m 

δ13C, 
� 

Dzvenygorod-West  section 
22 Khudykivtsy   0.0 � 1.0 
23 Khudykivtsy   0.7 3.1 
21 Khudykivtsy   1.1 1.9 
20 Khudykivtsy   1.3 2.3 
19 Khudykivtsy   1.7 2.3 
18 Khudykivtsy   2.7 2.6 
17 Khudykivtsy   4.0 3.8 
16 Khudykivtsy   5.0 3.5 
15 Khudykivtsy   6.0 2.2 
14 Khudykivtsy   7.0 1.8 
13 Khudykivtsy   8.0 2.1 
12 Dzvenygorod   9.0 1.5 
11 Dzvenygorod 10.0 1.6 
10 Dzvenygorod 11.0 1.4 
9 Dzvenygorod 12.0 0.9 
8 Dzvenygorod 13.0 0.7 
7 Dzvenygorod 14.0 0.3 
6 Dzvenygorod 15.0 0.1 
5 Dzvenygorod 16.0 � 0.1 
4 Dzvenygorod 17.0 � 0.1 
3 Dzvenygorod 18.0 � 0.4 
2 Dzvenygorod 19.0 � 0.6 
1 Dzvenygorod 20.0 � 0.2 
24 Dzvenygorod 21.0 � 0.3 
25 Dzvenygorod 22.0 � 0.8 
26 Dzvenygorod 23.0 � 0.6 
27 Dzvenygorod 24.0 � 0.9 
28 Dzvenygorod 25.0 � 0.1 
29 Dzvenygorod 26.0 � 0.5 
57 Dzvenygorod 27.0 � 0.2 
56 Dzvenygorod 28.0 0.1 
55 Dzvenygorod 29.0 0.0 
54 Dzvenygorod 30.0 0.4 
53 Dzvenygorod 31.0 � 0.1 
52 Dzvenygorod 32.0 0.4 
51 Dzvenygorod 33.0 0.6 
50 Dzvenygorod 34.0 � 0.4 
49 Dzvenygorod 35.0 0.4 
48 Dzvenygorod 36.0 0.4 
47 Dzvenygorod 37.0 � 0.4 
46 Dzvenygorod 38.0 0.2 
45 Dzvenygorod 39.0 � 0.4 
44 Dzvenygorod 40.0 0.7 
43 Dzvenygorod 41.0 1.4 
42 Dzvenygorod 42.0 0.5 
41 Dzvenygorod 43.0 0.8 
40 Dzvenygorod 43.6 1.6 
39 Dzvenygorod 44.6 1.9 
38 Trubchyn 45.6 0.7 
37 Trubchyn 46.6 1.0 
36 Trubchyn 47.6 � 0.2 
35 Trubchyn 48.6 � 0.3 
34 Trubchyn 49.6 0.1 
33 Trubchyn 50.6 0.5 
32 Trubchyn 51.6 � 1.2 
31 Trubchyn 52.6 0.0 

Sample
No. 

Formation Depth from the top, 
m 

δ13C, 
� 

Vidukle-61  section 
1 Til�e 911.0 � 1.6 
2 Til�e 913.3 � 1.5 
3 Til�e 914.0 � 1.4 
4 Til�e 915.0 � 1.3 
5 Til�e 916.1 � 1.1 
6 Til�e 917.0 � 0.1 
7 Til�e 918.1 0.0 
8 Til�e 919.0 0.2 
9 Til�e 920.2 0.1 
10 Til�e 921.2 0.1 
11 Til�e 922.1 0.5 
12 Til�e 924.0 0.6 
13 Til�e 925.1 1.3 
14 Til�e 925.6 1.0 
15 Til�e 926.1 1.0 
16 Til�e 926.4 1.3 
17 Til�e 927.3 1.1 
18 Til�e 927.9 1.3 
19 Til�e 928.6 1.2 
20 Til�e 929.3 0.9 
21 Til�e 930.0 1.6 
22 Til�e 931.1 1.5 
23 Til�e 932.2 0.9 
24 Jura 933.6 1.1 
25 Jura 934.2 1.3 
26 Jura 935.0 1.2 
27 Jura 936.0 0.8 
28 Jura 937.0 0.8 
29 Jura 938.0 0.7 
30 Jura 939.0 0.9 
31 Jura 939.8 0.7 
32 Jura 941.0 0.7 
33 Jura 943.0 1.0 
34 Jura 945.5 1.1 
35 Jura 947.0 0.9 
36 Jura 948.0 0.7 
37 Jura 950.0 1.3 
38 Jura 952.2 1.0 
39 Jura 954.0 0.9 
40 Jura 956.0 1.1 
41 Jura 958.4 1.2 
42 Jura 959.9 0.0 
43 Jura 961.0 0.1 
44 Jura 963.0 0.2 
45 Jura 965.0 0.0 
46 Jura 966.9 0.1 
47 Jura 969.0 0.3 
48 Jura 971.0 0.1 
49 Jura 972.0 � 0.2 
50 Jura 973.4 � 0.2 
51 Jura 975.0 � 0.3 
52 Jura 976.0 � 0.2 
53 Jura 978.0 � 0.1 
54 Jura 980.0 � 0.2 
55 Jura 981.4 � 0.3 
56 Jura 982.1 0.1 
57 Jura 984.0 0.1 
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Sample 
No. 

Formation Depth from the top, 
m 

δ13C, 
� 

58 Jura   986.0 0.2 
59 Jura   987.1 � 0.6 
60 Jura   989.0 0.0 
61 Jura   990.5 0.0 
62 Jura   992.0 0.1 
63 Jura   994.0 � 0.1 
64 Jura   996.0 � 0.1 
65 Jura   998.0 � 0.3 
66 Jura   999.5 0.0 
67 Jura 1001.8 � 0.1 
68 Jura 1002.8 � 0.3 
69 Jura 1003.5 � 0.3 
70 Minija 1004.5 � 0.6 
71 Minija 1006.6 � 0.5 
72 Minija 1007.6 � 0.5 
73 Minija 1009.0 � 0.3 
74 Minija 1010.5 � 0.4 
75 Minija 1012.0 � 0.3 
76 Minija 1014.0 0.0 
77 Minija 1015.4 � 0.2 
78 Minija 1017.0 � 0.4 
79 Minija 1018.3 � 0.5 
80 Minija 1020.0 � 0.3 
81 Minija 1021.5 0.1 
82 Minija 1023.0 � 0.4 
83 Minija 1024.5 � 0.6 
84 Minija 1026.0 � 0.3 
85 Minija 1027.6 � 0.2 
86 Minija 1029.0 0.1 
87 Minija 1030.0 � 0.2 
88 Minija 1032.0 � 0.2 
89 Minija 1034.0 � 0.4 
90 Minija 1036.0 � 1.3 
91 Minija 1037.0 � 1.2 
92 Minija 1038.2 � 1.4 
93 Minija 1040.0 � 1.0 
94 Minija 1041.5 � 0.9 
95 Minija 1042.9 � 1.1 
96 Minija 1044.5 � 1.2 
97 Minija 1046.4 � 1.5 
98 Minija 1048.4 � 1.4 
99 Minija 1050.0 � 1.3 
100 Minija 1052.5 � 0.7 
101 Minija 1054.5 � 0.8 
102 Minija 1056.5 � 0.7 
103 Minija 1058.5 � 0.9 
104 Minija 1060.0 � 1.0 
105 Minija 1062.0 � 1.4 
106 Minija 1064.1 � 0.6 
107 Minija 1065.8 � 0.7 
108 Minija 1067.8 � 0.6 
109 Minija 1069.9 � 0.2 
110 Minija 1071.9 0.5 
111 Ventspils 1074.4 0.3 
112 Ventspils 1076.5 0.8 
113 Ventspils 1078.5 0.4 
114 Ventspils 1081.0 0.1 
115 Ventspils 1082.5 0.3 
116 Ventspils 1083.5 0.2 

Sample
No. 

Formation Depth from the top, 
m 

δ13C, 
� 

117 Ventspils 1084.5 0.4 
118 Ventspils 1085.4 0.7 
119 Ventspils 1087.9 0.0 
120 Ventspils 1092.7 0.1 
121 Ventspils 1098.4 0.9 
122 Ventspils 1099.4 1.0 
123 Ventspils 1100.4 0.8 
124 Ventspils 1102.0 1.5 
125 Ventspils 1104.1 0.4 
126 Ventspils 1105.5 1.3 
127 Ventspils 1106.4 1.6 
128 Ventspils 1108.5 � 0.5 
129 Ventspils 1109.0 0.4 
130 Ventspils 1110.7 � 0.3 
131 Ventspils 1115.0 � 0.9 

�e�uvis-11  section 
1 Til�e   977.2 � 4.3 
2 Til�e   978.9 � 3.2 
3 Til�e   980.6 � 3.3 
4 Til�e   982.3 � 2.8 
5 Til�e   984.0 � 2.9 
6 Til�e   985.7 � 2.6 
7 Til�e   987.4 � 2.6 
8 Til�e   989.1 � 2.7 
9 Til�e   990.5 � 1.1 
10 Til�e   991.9 � 1.0 
11 Til�e   993.3 � 0.1 
12 Til�e   995.4 � 0.2 
13 Til�e   996.8 � 0.5 
14 Til�e   998.4 � 1.5 
15 Til�e   999.2 0.0 
16 Til�e 1001.7 � 0.2 
17 Til�e 1003.5 0.6 
18 Til�e 1005.0 � 0.3 
19 Jura 1005.4 � 0.2 
20 Jura 1008.4 1.2 
21 Jura 1009.3 1.2 
22 Jura 1010.6 0.8 
23 Jura 1011.5 0.9 
24 Jura 1012.3 0.8 
25 Jura 1013.6 0.8 
26 Jura 1015.4 0.8 
27 Jura 1016.4 0.6 
28 Jura 1017.6 0.4 
29 Jura 1019.3 0.5 
30 Jura 1020.4 0.5 
31 Jura 1021.3 0.5 
32 Jura 1022.4 1.2 
33 Jura 1023.5 0.4 
34 Jura 1024.4 0.8 
35 Jura 1025.3 0.4 
36 Jura 1027.2 0.0 
37 Jura 1030.6 0.1 
38 Jura 1032.9 0.5 
39 Jura 1034.0 0.4 
40 Jura 1035.1 0.5 
41 Jura 1038.4 0.3 
42 Jura 1040.0 0.0 
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Sample 

No. 
Formation Depth from the top, 

m 
δ13C, 

� 
43 Jura 1041.4 0.1 
44 Jura 1042.9 0.1 
45 Jura 1044.0 � 0.4 
46 Jura 1051.2 � 0.9 
47 Jura 1053.0 � 0.9 
48 Jura 1054.8 � 1.0 
49 Jura 1056.5 � 0.2 
50 Jura 1057.2 � 0.8 
51 Jura 1059.0 � 0.8 
52 Jura 1060.8 � 0.6 
53 Jura 1062.1 � 0.2 
54 Jura 1063.5 � 1.0 
55 Jura 1065.2 � 1.0 
56 Jura 1067.1 � 0.1 
57 Jura 1069.1 � 0.2 
58 Jura 1071.6 � 0.7 
59 Jura 1072.6 � 1.0 
60 Jura 1073.5 � 0.3 
61 Jura 1074.9 � 0.1 
62 Jura 1075.8 � 0.9 
63 Jura 1076.5 � 0.7 
64 Jura 1078.2 � 0.6 
65 Jura 1079.5 � 0.6 
66 Jura 1082.0 � 0.8 
67 Jura 1083.6 � 0.3 
68 Jura 1085.5 � 2.2 
69 Jura 1087.0 0.1 
70 Jura 1088.4 0.1 
71 Jura 1089.6 � 0.1 
72 Jura 1091.0 � 0.6 
73 Jura 1092.7 � 0.7 
74 Jura 1093.5 � 0.7 
75 Jura 1094.7 � 0.8 
76 Jura 1095.9 � 1.1 
77 Jura 1097.1 � 0.8 
78 Jura 1099.2 � 0.6 
79 Jura 1100.3 � 0.9 
80 Jura 1102.4 � 0.6 
81 Jura 1106.2 � 0.5 
82 Jura 1108.5 � 0.6 
83 Jura 1110.2 � 0.3 
84 Jura 1111.5 � 0.2 
85 Jura 1112.6 � 0.3 
86 Jura 1113.7 � 0.5 
87 Jura 1116.6 0.0 
88 Jura 1117.5 � 0.5 
89 Jura 1118.7 � 0.3 
90 Minija 1119.3 � 0.4 
91 Minija 1121.0 � 0.2 
92 Minija 1122.6 0.0 
93 Minija 1123.9 � 0.6 
94 Minija 1125.2 � 0.3 
95 Minija 1127.5 � 0.9 
96 Minija 1128.8 � 0.8 
97 Minija 1130.1 � 0.5 
98 Minija 1131.4 � 0.4 
99 Minija 1133.3 � 0.3 
100 Minija 1134.0 � 0.3 
101 Minija 1135.3 � 0.2 

    
Sample

No. 
Formation Depth from the top, 

m 
δ13C, 

� 
102 Minija 1136.7 � 0.7 
103 Minija 1138.3 � 0.7 
104 Minija 1138.6 � 0.7 
105 Minija 1140.5 � 0.6 
106 Minija 1142.4 � 0.6 
107 Minija 1144.3 � 0.7 
108 Minija 1146.2 � 1.5 
109 Minija 1150.0 � 0.7 

Kotuzhiny  section 
1 Khudykivtsy   85.6 0.3 
2 Khudykivtsy   86.6 0.7 
3 Khudykivtsy   87.9 2.3 
4 Khudykivtsy   88.8 1.6 
5 Khudykivtsy   89.7 1.7 
6 Khudykivtsy   90.6 2.4 
7 Khudykivtsy   91.6 2.8 
8 Khudykivtsy   92.5 2.2 
9 Khudykivtsy   93.3 2.8 
10 Khudykivtsy   94.5 2.6 
11 Khudykivtsy   95.0 1.8 
12 Dzvenygorod   96.0 0.9 
13 Dzvenygorod   97.0 0.5 
14 Dzvenygorod   98.0 1.9 
15 Dzvenygorod   99.0 1.8 
16 Dzvenygorod 100.0 1.2 
17 Dzvenygorod 101.0 1.5 
18 Dzvenygorod 102.0 1.1 
19 Dzvenygorod 103.0 2.3 
20 Dzvenygorod 104.0 0.8 
21 Dzvenygorod 105.0 1.0 
22 Dzvenygorod 106.0 � 0.3 
23 Dzvenygorod 107.0 1.1 
24 Dzvenygorod 108.0 1.7 
25 Dzvenygorod 109.0 1.5 
26 Dzvenygorod 110.0 1.4 
27 Dzvenygorod 111.0 � 0.1 
28 Dzvenygorod 112.0 � 0.3 
29 Dzvenygorod 113.0 0.2 
30 Dzvenygorod 114.0 1.1 
31 Dzvenygorod 115.0 0.0 
32 Dzvenygorod 116.0 � 0.4 
33 Dzvenygorod 117.0 � 0.2 
34 Dzvenygorod 118.0 0.8 
35 Dzvenygorod 119.0 1.7 
36 Dzvenygorod 120.0 2.9 
37 Dzvenygorod 121.0 4.5 
38 Dzvenygorod 122.0 4.4 
39 Dzvenygorod 123.0 3.6 
40 Dzvenygorod 124.0 4.4 
41 Dzvenygorod 125.0 3.8 
42 Dzvenygorod 126.0 4.1 
43 Dzvenygorod 127.0 3.6 
44 Trubchyn 128.0 3.6 
45 Trubchyn 129.0 3.5 
46 Trubchyn 130.0 2.0 
47 Trubchyn 131.0 1.8 
48 Trubchyn 132.0 1.7 
49 Trubchyn 133.0 0.3 
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Sample 

No. 
Formation Depth from the top, 

m 
δ13C, 

� 
50 Trubchyn 134.0 0.6 
51 Trubchyn 135.0 0.1 
52 Trubchyn 136.0 0.0 
53 Trubchyn 137.0 � 0.3 
54 Trubchyn 138.0 � 0.2 
55 Trubchyn 139.0 � 0.6 
56 Trubchyn 140.0 � 0.1 
57 Trubchyn 141.0 0.3 
58 Trubchyn 142.0 � 0.2 
59 Trubchyn 143.0 � 0.1 
60 Trubchyn 144.0 0.1 
61 Trubchyn 145.0 0.0 
62 Trubchyn 146.0 � 0.3 
63 Trubchyn 147.0 � 0.7 
64 Trubchyn 148.0 0.1 
65 Trubchyn 149.0 0.2 
66 Trubchyn 150.0 � 0.2 
67 Trubchyn 151.0 � 0.5 
68 Trubchyn 152.0 � 0.5 
69 Trubchyn 153.0 � 0.4 
70 Trubchyn 154.0 0.4 
71 Varnytsya 155.0 0.0 
72 Varnytsya 156.0 � 0.3 
73 Varnytsya 157.0 0.2 
74 Varnytsya 158.0 � 0.7 
75 Varnytsya 159.0 � 1.3 
76 Varnytsya 160.0 � 1.9 
77 Varnytsya 161.0 � 1.9 
78 Varnytsya 162.0 � 1.1 
79 Varnytsya 163.0 � 3.2 
80 Varnytsya 164.0 � 1.9 
81 Varnytsya 165.0 � 1.6 
82 Varnytsya 166.0 � 0.8 
83 Varnytsya 167.0 � 1.7 
84 Varnytsya 168.0 � 2.4 
85 Varnytsya 169.0 � 1.6 
86 Varnytsya 170.0 � 1.6 
87 Varnytsya 171.0 � 2.5 
88 Varnytsya 172.0 � 2.5 
89 Varnytsya 173.0 � 2.5 
90 Varnytsya 174.0 � 1.7 
91 Varnytsya 175.0 � 0.9 
92 Varnytsya 176.0 � 2.2 
93 Varnytsya 177.0 � 1.9 
94 Varnytsya 178.0 � 2.1 
95 Varnytsya 179.0 � 2.9 
96 Varnytsya 180.0 � 2.7 
97 Varnytsya 181.0 � 0.7 
98 Varnytsya 182.0 � 2.6 
99 Varnytsya 183.0 � 1.8 
100 Varnytsya 184.0 � 1.9 
101 Varnytsya 185.0 � 2.2 
102 Varnytsya 186.0 � 2.6 
103 Varnytsya 187.0 � 1.5 
104 Varnytsya 188.0 � 2.9 
105 Varnytsya 189.0 � 1.3 
106 Varnytsya 190.0 � 0.8 
107 Varnytsya 191.0 � 0.7 
108 Varnytsya 192.0 � 2.0 
109 Varnytsya 193.0 � 3.9 
110 Varnytsya 194.0 � 2.6 

    
Sample

No. 
Formation Depth from the top, 

m 
δ13C, 

� 
111 Varnytsya 195.0 � 2.1 
112 Varnytsya 196.0 � 0.2 
113 Varnytsya 197.0 � 0.4 
114 Varnytsya 198.0 � 0.8 
115 Varnytsya 199.0 � 0.1 
116 Varnytsya 200.0 0.4 
117 Varnytsya 201.0 1.1 
118 Varnytsya 202.0 � 0.9 
119 Varnytsya 203.0 � 0.9 
120 Varnytsya 204.0 0.0 
121 Varnytsya 205.0 � 1.4 
122 Varnytsya 206.0 � 2.2 
123 Varnytsya 207.0 � 2.6 
124 Varnytsya 208.0 � 1.8 
125 Varnytsya 209.0 � 1.8 
126 Varnytsya 210.0 � 2.8 
127 Varnytsya 211.0 � 5.0 
128 Varnytsya 212.0 � 3.5 
129 Varnytsya 213.0 � 3.0 
130 Varnytsya 214.0 � 3.9 
132 Prygorodok 215.0 � 2.5 
133 Prygorodok 216.0 � 2.1 
134 Prygorodok 217.0 � 2.5 
135 Prygorodok 218.0 � 2.7 
136 Prygorodok 219.0 � 2.8 
137 Prygorodok 220.0 � 2.8 
138 Prygorodok 221.0 � 2.0 
139 Prygorodok 222.0 � 0.6 
140 Prygorodok 223.0 � 0.9 
141 Prygorodok 224.0 � 1.4 
142 Prygorodok 225.0 0.3 
143 Prygorodok 226.0 � 0.8 
144 Prygorodok 227.0 � 1.6 
145 Prygorodok 228.0 � 1.7 
146 Prygorodok 229.0 � 0.8 
147 Prygorodok 230.0 0.0 
148 Prygorodok 231.0 0.1 
149 Isakivtsy 232.0 0.3 
150 Isakivtsy 233.0 0.3 
151 Isakivtsy 234.0 0.4 
152 Isakivtsy 235.0 0.3 
153 Isakivtsy 236.0 � 0.3 
154 Isakivtsy 237.0 � 0.1 
155 Isakivtsy 238.0 � 0.2 
157 Isakivtsy 239.0 � 0.3 
158 Isakivtsy 240.0 � 0.3 
159 Grinchuk 241.0 0.1 
160 Grinchuk 242.0 � 0.3 
161 Grinchuk 243.0 0.1 
162 Grinchuk 244.0 0.3 
163 Grinchuk 245.0 0.5 
164 Grinchuk 246.0 0.4 
165 Grinchuk 247.0 � 0.1 
166 Grinchuk 248.0 0.3 
167 Grinchuk 249.0 0.1 
168 Grinchuk 250.0 � 0.1 
169 Grinchuk 251.0 0.0 
170 Grinchuk 252.0 0.1 
171 Grinchuk 253.0 0.2 
172 Grinchuk 254.0 0.1 




