
 158

Estonian Journal of Engineering, 2011, 17, 2, 158–168 doi: 10.3176/eng.2011.2.06

System-level optimization of NoC-based
timing sensitive systems

Mihkel Tagel, Peeter Ellervee, Thomas Hollstein and Gert Jervan

Department of Computer Engineering, Tallinn University of Technology, Ehitajate tee 5, 19086
Tallinn, Estonia; {mihkel.tagel, peeter.ellervee, thomas.hollstein, gert.jervan}@ati.ttu.ee

Received 7 February 2011, in revised form 29 March 2011

Abstract. Communication modelling and synthesis plays an important role in the design of complex
network-on-chip based timing-sensitive systems-on-chip. Trying to guarantee the observance of tim-
ing constraints without detailed know-how of communication transactions might lead to unexpected
results. In our previous work we have proposed a system level approach for communication modelling
and synthesis to calculate hard communication deadlines based on communication delay models and
on guidance of the scheduling process to take into account possible network conflicts. In this paper we
combine our communication scheduling approach with global optimization techniques to perform
design space exploration and/or improvement of the synthesized schedule.

Key words: network-on-chip, system-on-chip, communication modelling, design space explora-
tion, system-level optimization.

1. INTRODUCTION

The trend of integrating an ever increasing number of components on the chip

has led to the chip architectures where the on-chip communication infrastructure is
not anymore bus-based but resembles more computer networks. Such networks-on-
chip (NoC) provide to a designer a flexible, scalable, and unified layered
communication platform [1]. In addition, new integration methodologies have lead
to new 3D architectures, where the dies are stacked into 3-dimensional structures,
thus providing even higher densities and complexity. In such NoC-based systems
the communication is achieved by routing packets through the network infra-
structure, rather than routing global wires. However, communication parameters
(inter-task communication volume, link latency and bandwidth, buffer size) might
have major impact to the performance of applications implemented on NoCs.
Therefore, in order to guarantee predictable behaviour and to satisfy performance

 159

constraints of real-time systems, careful selection of application partitioning,
mapping and synthesis algorithms is required. In the context of this paper, we mean
by communication synthesis the mapping of data packets to the network links and
the timing of the release of the packets on the links, i.e. calculating spatial and
temporal properties of the application communication tasks with respect to the
given system architecture at early stages of the design flow. Earlier we have pro-
posed an approach for communication modelling and synthesis to calculate
communication hard deadlines, based on communication delay models, and to
guide the scheduling process to take into account possible network conflicts [2,3].
However, the quality of schedules has not been addressed so far. Nor have we
taken into account the influence of the task mapping to the scheduling process.

Mapping tasks to processing cores is similar to the quadratic assignment
problem (QAP) that is known to be computationally intensive [4]. To run an
exhaustive search to find a global optimum is infeasible for such complex
problems. Heuristics shall be used to approximate the optimum in a reasonable
amount of time. Various optimization techniques have been described by several
authors to solve the mapping or scheduling problem [5–13]. However, different
assumptions on communication modelling do not allow the heuristics to be used
one-to-one in our system-level design framework. In this paper we combine our
communication modelling approach with global optimization techniques to
perform design space exploration and improvement of synthesized schedules.
The paper is organized as follows. In Section 2 we introduce our system-level
model and the NoC platform. In Section 3 we describe the usage of two schedule
optimization techniques and design space exploration in our framework. Experi-
mental results are given in Section 4 followed by conclusions.

2. SYSTEM-LEVEL MODEL

One of the important points in the design space exploration is speed. One

could simulate an application to get more accurate results, but this is usually
slow. Therefore, we abstract the implementation details of the network-on-chip
and perform design space exploration on a high level of abstraction. However,
our approach keeps the communication modelling as precise as possible.

Input to our system-level design flow is application ,A NoC architecture N
and application mapping M (Fig. 1). Application is specified by a directed
acyclic graph (,),A T C= where { | 1, , }iT t i T= = K is a set of vertexes
representing non pre-emptive tasks, and ,{ | (,) {1, , } {1, , }}i jC c i j V x V= ∈ K K is
a set of edges representing communication between tasks. Each task it is
characterized by the worst case execution time (WCET) .iWcet Tasks can be
completed earlier than their WCET but communication between the tasks needs
to be initiated at their respective scheduled time periods to avoid network
conflicts. This is controlled by the sender network interface. Therefore, no
customization of routers is needed. NoC platform introduces communication
latency that depends not only on the message size, but also on the resource map-

 160

Fig. 1. System-level design flow.

ping and needs to be taken into account. Therefore, in addition to message size
the edge is characterized by communication delay (CD) , .i jCd We assume that
the application has dummy start and end vertices.

The NoC architecture can be modelled as a directed graph (,),N R L= where
{ | 1, , }kR r k R= = K is a set of resources and ,{ | (,)k lL l k l= ∈

{1, , } {1, , }}R x RK K is a set of links connecting a pair of resources (,).k l The
mapping M of an application A is represented by the function ().M T R→ The
architecture is characterized by operating frequency, topology, routing algorithm,
switching method, link bit-width and the delay model of the network interface and
routers.

We assume that each processing core is controlled by a scheduler that takes
care of the task execution on the core and schedules the message transfers
between the tasks. Otherwise a task that completes earlier than its calculated
WCET and starts a message transfer could lead to an unexpected network
congestion and have a fatal effect on the global execution schedule. The schedule
is calculated offline and a partial schedule is stored in each local scheduler
memory. We assume that the size of an input buffer is one packet in the case of
virtual cut-through or store-and-forward and one flit in the case of a wormhole
switching method. No output buffering is used. The input buffer of one flow
control unit together with its incoming communication link can be considered as
one shared resource during the communication synthesis. It also requires

 161

minimum hardware resources from a router. To have a predictable communica-
tion model, we assume the use of deterministic routing algorithms. In our experi-
ments we are using a dimension-ordered XY routing. Our communication model-
ling, synthesis and scheduling approach is explained in greater detail in [2,3].

Once the tasks have been mapped to the architecture, an iterative process
starts (Fig. 1). It consists of communication synthesis and task scheduling. The
produced schedule is verified by running an application simulation on a NoC
simulator or a design space exploration performed that will try to improve the
task mapping and schedule. If the design requirements are met, the lower levels
of HW/SW co-design processes continue. Otherwise changes are needed in the
architecture or in the mapping.

The goal of this paper can be formulated as follows. Given application ,A a
NoC architecture N and a mapping (),M T R→ our goal is to perform design
space exploration and optimization of the initial design with respect to schedule
length and to produce a set of feasible near-optimum design options. At the same
time, we also measure the calculation time that is used to define the trade-off
between the improvement, gained during optimization and the time spent for
calculation. Our goal is not to propose any enhancements to optimization
methods, but to show that our communication modelling and synthesis approach
can be applied to arbitrary scheduling or optimization method.

3. DESIGN SPACE EXPLORATION AND OPTIMIZATION

Networks-on-chip are flexible communication platforms with computation

being decoupled from communication. The available flexibility increases the
amount of design options that need to be explored. Application mapping has a
major impact on the schedule length, NoC performance and power consump-
tion [1]. Depending on the level of freedom there are two options – to explore
different application mappings or to improve a schedule, based on a given
mapping. Our ultimate goal is to perform design space exploration and optimiza-
tion at the same time.

First we will describe the approach to a given application with a fixed
mapping on a NoC. The initial schedule is produced by applying a modified list
scheduling as described in [2,3]. List scheduling is a greedy heuristics using a
priority list and precedence constraints to schedule the tasks and to minimize the
schedule length. The algorithm is straightforward to implement and it has a low
calculation time. The algorithm could be also implemented on-chip, allowing
dynamic re-configuration and resulting in improved application fault tolerance.
However, to get an optimum solution, one would need to schedule all possible
task sequences, reaching in worst case n! permutations. We are using branch-
and-bound and simulated annealing global optimization techniques to explore the
trade-off between improvement in schedule length and time spent for calculation.
Second, we will perform a design space exploration with simulated annealing in
order to compare it to the schedule optimization.

 162

3.1. Schedule optimization with branch-and-bound

Branch-and-bound (B&B) is a general algorithm for finding optimal solutions

for various computationally intensive optimization problems. Branch-and-bound
consists of three main functions – branching, bounding and pruning. Branching
describes the problem as a search tree, whose nodes are subsets of the given
problem. Bounding calculates the upper and lower bounds that are used to
evaluate a set of candidates and to prune the ones that do not lead to an optimum.

We are exploiting B&B in the following way. We maintain a partial schedule
and a list of ready tasks for every B&B tree node. We have a sorted list of all
partial schedule lengths and we are choosing a node to branch, based on a best-
first strategy. We have also evaluated a breadth-first search, but it did not
improve the calculation speed. Each ready task of a node being expanded will be
added into the B&B search tree and stored also in the partial schedule list. Such a
branching strategy avoids infeasible solutions and reduces the number of
calculations. The partial schedule length is calculated, based on the order of tasks
in the partial schedule list. The rest of the tasks are scheduled by list scheduling
that gives us a tight upper bound. The lower bound lB is calculated as in [5]:

t
l p

pc

WCET
,B S

N
= +∑

∑
 (1)

where WCET is the total of unscheduled tasks, pcN is the number of processing
cores and pS is the partial schedule length.

After that, we evaluate all candidate solutions. We prune the nodes that have
their lower bounds higher or equal to the global best upper bound. The process
continues until there are no more nodes to expand. An example of the branch-
and-bound calculation process is depicted in Fig. 2. The application consists of

Fig. 2. An example of branch-and-bound result conversion.

 163

100 tasks mapped on a 6 × 6 2D-mesh NoC. List schedule length is 9226 µs
while branch-and-bound result gives almost 15% of improvement (7882 µs).
However, the calculation time increases 71 times from 0.12 to 8.53 s.

3.2. Schedule optimization with simulated annealing

Simulated annealing (SA) is a probabilistic metaheuristic for the global

optimization problem, locating a near-optimal solution in a feasible amount of
time [14]. The simulated annealing comprises creating an initial solution that will
be annealed by generating moves in the neighbourhood. Result (cost) of a move
is calculated based on a target function and compared to the currently known best
value. In our case the cost function is the application schedule length. The
cooling schedule controls the decrease of temperature, which has an effect on the
move energy. The process continues until a termination condition has been met.

In simulated annealing it is important to find feasible values for initial para-
meters: the initial temperature (related with initial acceptance probability) and the
cooling schedule. When the initial temperature is too high, many bad uphill
moves might be accepted driving SA far away from the reasonable solution
space. When it is too low, SA might not reach solutions, which require more
energy to cross higher hills to reach a global optimum. To estimate the initial
temperature, we use the approach, described in [15]. First, we create an initial
solution. Next, we generate n random moves and record the difference between
the initial solution and the random move and calculate the average difference

av().D The initial temperature inT can be estimated as

2
in in av(1 log ()) ,T p D= − (2)

where inp is the initial probability to accept uphill moves. In our experiments we
have used in 0.9.p = We have used an exponential cooling schedule, described
by the following equation:

new ,T Tα= (3)

where α is a constant (in our experiments usually between 0.7–0.96) and T is
the current temperature.

An acceptance criterion is needed to overcome local optimums and accept
uphill moves. One of the most common is the Metropolis acceptance criterion:

acc ,E kTp e ∆−= (4)

where E∆ is the difference of the object function between the modified solution
and the current one and k is the Boltzman constant [16]. The acceptance
probability accp is compared to a random value, generated uniformly in the range
of [0,1]. The probability of accepting uphill moves decreases with the tempera-
ture and with the increase of .E∆ Therefore selection of the initial temperature,
probability and cooling schedule is important for the performance of SA.

 164

When optimizing the schedule (having fixed mapping) with simulated anneal-
ing, a neighbouring solution is created by selecting randomly a task and randomly
increasing or decreasing its priority in the ready list. For this we record during
scheduling the tasks that are ready at the same time. The distance rtM , to which a
random task can be shifted in the queue, is controlled by the following formula:

rt rl in() ,M Q T T= (5)

where rlQ is the size of the ready list.
In literature various termination conditions can be found. In our approach we

specify the number of temperature levels tN we are annealing at minimum, until
we stop the process. The counter is incremented when we have found a better or
equal solution compared to the previous one. The counter is reset to zero when a
higher result is found as we might have recovered from a local optimum and it
would need further examination. At each temperature we are creating at minimum

tN random neighbourhood solutions. The counter is incremented when an uphill
move is rejected and decremented when a solution is accepted. The idea is
essentially to keep the process on the same energy level until it stabilizes and only
then lower the temperature. The pseudo-code of simulated annealing is depicted in
Fig. 3.

Fig. 3. Pseudo-code of simulated annealing.

Simlated Annealing (alpha, Tinitial, Nallowed_temperatures, Nallowed_peturbations)
1 Construct initial solution Scurrent;
2 Current temperature T = Tinitial;
3 Global best solution Sglobal = ∞; Ntemperatures = 0;
4
5 While Ntemperatures < Nallowed_temperatures Do Begin
6 Number of peturbations Npeturb = 0;
7 While Npeturb < Nallowed_peturbations Do Begin
8 Generate randomly a neighbouring solution Sneighbor
9 Calculate Sneighbor schedule length
10 ∆E = Sneighbor – Scurrent;
11
12 If ∆E<0 Then
13 Scurrent = Sneighbor; Npeturb = 0;
14 Else
15 Generate random value r = uniform_random(0, 1);
16 If r ≤ e-∆E/T Then
17 Scurrent = Sneighbor; Npeturb = Npeturb - 1;
18 Else
19 Npeturb = Npeturb + 1;
20 End If;
21 End If;
22 End;
23
24 If Scurrent <= Sglobal Then
25 Sglobal = Scurrent; Ntemperatures = Ntemperatures + 1;
26 Else
27 Ntemperatures = 0;
28 End If;
29 Set T = alpha*T;
30 End;
End Simulated Annealing;

 165

Fig. 4. An example of simulated annealing results.

Figure 4 depicts example results of simulated annealing having the same

application and platform as with branch-and-bound. The simulated annealing
schedule length is 7988 µs, which is 13% better than a schedule produced by list
scheduling (9226 µs) and close to the branch-and-bound result (7882 µs). The
SA calculation time (96 s) is 800 times higher than for list scheduling and 11
times higher compared to B&B.

3.3. Design space exploration with simulated annealing

When schedule optimization does not give the required amount of improve-

ment we can go for design space exploration and find an alternative mapping that
could give better results. We are using the simulated annealing approach for that.
Design space exploration is performed by selecting randomly a task and re-map-
ping it to another processing core. The distance between original and re-mapped
core (number of hops) is controlled by cooling. Initially, the distance can be
higher while eventually reaching one hop (nearby cores). To evaluate cost of the
move we need to perform each time communication synthesis and schedule the
tasks and the communication. Figure 4 depicts combined results of a simulated
annealing schedule optimization and a design space exploration. It can be seen
that the design space exploration resulted in a mapping that gave the best
schedule length 7264 µs, compared to B&B (7882 µs). However, the calculation
time was around 11 times longer (96 s) compared to B&B. We have performed
an experiment were application with 100 tasks and 30 arbitrary mappings were

 166

given and design exploration was run with simulated annealing. An average
schedule length of 7324 µs was achieved, which is less than 1% different from
the best result. It shows that general purpose heuristics can be used effectively to
solve specific design space exploration problems.

4. EXPERIMENTAL RESULTS

We have built a design environment that supports the system-level model and

optimization framework described in the previous sections. We have chosen
synthetic task graphs, containing 100, 500, 750 and 1000 tasks, to show scaling
of the global optimization on big applications. The NoC platform we have used is
a 2D 6 × 6 mesh, having an operating frequency of 500 MHz, a link bit-width of
32 bits, a packet-size of 512 bits (flit-size 32 bits), and a wormhole switching
with dimension-ordered XY routing. The computing resources are homogeneous
– the task WCET is the same on all resources. The tests were performed on a
computer with Intel L2400 CPU (1.66 GHz), 1 GB of available physical RAM
and operating system Microsoft Windows XP. As simulated annealing depends
heavily on the quality of the random number generator, we have run 20 tests in a
batch varying the random number generator seed. We depict the minimum,
maximum and average result. The SA initial parameters were chosen as
described in Section 3.2. Task mapping was generated by an external tool for
each application and the same mapping was used in all experiments.

The results in Table 1 show that all the optimization techniques have pro-
duced a better schedule than the list scheduling (LS). However, this is achieved
at the cost of increased calculation time. For applications with 750 and 1000
tasks, the schedule optimization with SA was not able to produce a result in
feasible amount of time. When we compare different optimization techniques it
can be seen, that branch-and-bound has given from 10% to 15% of improvement
with lowest calculation time. As we create only valid solution branches in the
B&B, this reduces rapidly the number of iterations, reaching the solution faster
than simulated annealing. The simulated annealing performance could be
increased by a more efficient way to generate the neighbourhood, where a change
of the existing solution is created. Design space exploration with SA reached

Table 1. Comparison of the optimization techniques

Shedule length, µs Calculation time, min

SA Exploration with SA

Num-
ber of
tasks

List
shedule

Branch-
and-

bound
Min Avg Max Min Avg Max

LS B&B SA Expl.
SA

100 9 226 7 882 7 988 8 488 8 719 7 264 7 367 7 998 0.003 0.1 1.3 1.8
500 18 496 16 728 18 019 18 112 18 206 16 916 17 522 18 265 0.03 13.7 34.7 18.2
750 32 127 28 932 NA NA NA 28 150 29 217 30 193 0.05 35.5 NA 33.6

1000 36 772 33 103 NA NA NA 33 642 33 733 34 086 0.10 85.9 NA 267.3

 167

a similar schedule optimization as B&B, but the calculation time explodes with
the increase of the application size. It is important to note, that in the design
space exploration communication must be synthesized for each modified
solution. In the schedule optimization, it is needed only to re-schedule the tasks
and communication that is less time consuming.

5. CONCLUSIONS

In this paper we have presented branch-and-bound and simulated annealing

optimization techniques in order to estimate and improve the schedule length and
to perform design space exploration in our system-level design framework. The
framework models communication at the link level, using a traditional task graph
based modelling technique and supporting various switching techniques. The
results show, that this communication modelling technique can be used with both
of the presented optimization methods, gaining improvement in schedule length
by re-ordering or re-mapping the tasks.

REFERENCES

 1. Marculescu, R., Ogras, U. Y., Li-Shiuan Peh, Jerger, N. E. and Hoskote, Y. Outstanding

research problems in NoC design: system, microarchitecture, and circuit perspectives. IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, 2009, 28, 3–21.

 2. Tagel, M., Ellervee, P. and Jervan, G. System-level communication synthesis and dependability
improvements for network-on-chip based systems. Estonian J. Eng., 2010, 16, 23–38.

 3. Tagel, M., Ellervee, P., Hollstein, T. and Jervan, G. Communication modelling and synthesis
for NoC-based systems with real-time constraints. In Proc. IEEE Symposium on Design
and Diagnostics of Electronic Circuits and Systems. Cottbus, Germany, 2011, 237–242.

 4. Garey, M. R. and Johson, D. S. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H.Freeman Publ., New York, 1979.

 5. Rahman, M. M. and Chowdhury, M. Examining branch and bound strategy on multiprocessor
task scheduling. In Proc. International Conference on Computer and Information
Technology. Dhaka, Bangladesh, 2009, 162–167.

 6. Kazem, A., Rahmani, A. M. and Aghdam, H. H. A modified simulated annealing algorithm for
static task scheduling in grid computing. In Proc. International Conference on Computer
Science and Information Technology. Singapore, 2008, 623–627.

 7. Orsila, H., Salminen, E., Hännikäinen, M. and Hämäläinen, T. D. Optimal subset mapping and
convergence evaluation of mapping algorithms for distributing task graphs on multi-
processor SoC. In Proc. International Symposium on System-on-Chip. Tampere, Finland,
2007, 1–6.

 8. Talbi, E.-G. and Muntean, T. Hill-climbing, simulated annealing and genetic algorithms: a
comparative study and application to the mapping problem. In Proc. 26th Hawaii Inter-
national Conference on System Sciences. Wailea, Hawaii, 1993, 565–573.

 9. Lee, C. and Bic, L. On the mapping problem using simulated annealing. In Proc. 8th Annual
International Phoenix Conference on Computers and Communications. Scottsdale,
Arizona, USA, 1989, 40–44.

10. Lu, Z., Xia, L. and Jantsch, A. Cluster-based simulated annealing for mapping cores onto 2D
mesh networks on chip. In Proc. 11th IEEE Workshop on Design and Diagnostics of
Electronic Circuits and Systems. Bratislava, Slovakia, 2008, 1–6.

 168

11. Nanda, A. K., DeGroot, D. and Stenger, D. L. Scheduling directed task graphs on multi-
processors using simulated annealing. In Proc. 12th International Conference on
Distributed Computing Systems. Yokohama, Japan, 1992, 20–27.

12. Murali, S., Benini, L. and De Micheli, G. Mapping and physical planning of networks-on-chip
architectures with quality-of-service guarantees. In Proc. Asia and South Pacific Design
Automation Conference. Shanghai, China, 2005, 27–32.

13. Ascia, G., Catania, V. and Palesi, M. An evolutionary approach to network-on-chip mapping
problem. In Proc. 2005 IEEE Congress on Evolutionary Computation. Edinburgh, Scot-
land, 2005, 112–119.

14. Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. Optimization by simulated annealing. Science,
1983, 220(4598), 671–680.

15. Ledesma, S., Avina, G. and Sanchez, R. Practical considerations for simulated annealing
implementation. In Simulated Annealing (Tan, C. M., ed.). InTech, 2008.

16. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. and Teller, A. H. Equation of state
calculations by fast computing machines. J. Chem. Phys., 1953, 21, 1087–1092.

Kiipvõrkudel põhinevate keerukate kiipsüsteemide
optimeerimine süsteemitasemel

Mihkel Tagel, Peeter Ellervee, Thomas Hollstein ja Gert Jervan

Kommunikatsiooni modelleerimisel ja sünteesil on oluline roll keerukate, kiip-

võrkudel põhinevate kiipsüsteemide disainil. Ilma detailse arusaamiseta kiipide-
vahelisest kommunikatsioonist on aga raske anda hinnangut süsteemi ajalisele
käitumisele ja garanteerida selle vastavust nõuetele. Artiklis on esitatud kommuni-
katsiooni modelleerimise ja sünteesi meetod, mis võimaldab leida andmeülekan-
deks kuluva aja, võttes seejuures arvesse võimalikke võrgukonflikte. On kirjel-
datud selle kommunikatsiooni modelleerimise meetodi kombineerimist erinevate
globaalsete optimeerimisalgoritmidega eesmärgiga leida efektiivsem ülesannete
planeering ja jaotus kiipsüsteemi protsessoritel.

