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Abstract. Communication modelling and synthesis plays an important role in the design of complex 
network-on-chip based timing-sensitive systems-on-chip. Trying to guarantee the observance of tim-
ing constraints without detailed know-how of communication transactions might lead to unexpected 
results. In our previous work we have proposed a system level approach for communication modelling 
and synthesis to calculate hard communication deadlines based on communication delay models and 
on guidance of the scheduling process to take into account possible network conflicts. In this paper we 
combine our communication scheduling approach with global optimization techniques to perform 
design space exploration and/or improvement of the synthesized schedule. 
 
Key words: network-on-chip, system-on-chip, communication modelling, design space explora-
tion, system-level optimization. 

 
 

1. INTRODUCTION 
 
The trend of integrating an ever increasing number of components on the chip 

has led to the chip architectures where the on-chip communication infrastructure is 
not anymore bus-based but resembles more computer networks. Such networks-on-
chip (NoC) provide to a designer a flexible, scalable, and unified layered 
communication platform [1]. In addition, new integration methodologies have lead 
to new 3D architectures, where the dies are stacked into 3-dimensional structures, 
thus providing even higher densities and complexity. In such NoC-based systems 
the communication is achieved by routing packets through the network infra-
structure, rather than routing global wires. However, communication parameters 
(inter-task communication volume, link latency and bandwidth, buffer size) might 
have major impact to the performance of applications implemented on NoCs. 
Therefore, in order to guarantee predictable behaviour and to satisfy performance 
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constraints of real-time systems, careful selection of application partitioning, 
mapping and synthesis algorithms is required. In the context of this paper, we mean 
by communication synthesis the mapping of data packets to the network links and 
the timing of the release of the packets on the links, i.e. calculating spatial and 
temporal properties of the application communication tasks with respect to the 
given system architecture at early stages of the design flow. Earlier we have pro-
posed an approach for communication modelling and synthesis to calculate 
communication hard deadlines, based on communication delay models, and to 
guide the scheduling process to take into account possible network conflicts [2,3]. 
However, the quality of schedules has not been addressed so far. Nor have we 
taken into account the influence of the task mapping to the scheduling process. 

Mapping tasks to processing cores is similar to the quadratic assignment 
problem (QAP) that is known to be computationally intensive [4]. To run an 
exhaustive search to find a global optimum is infeasible for such complex 
problems. Heuristics shall be used to approximate the optimum in a reasonable 
amount of time. Various optimization techniques have been described by several 
authors to solve the mapping or scheduling problem [5–13]. However, different 
assumptions on communication modelling do not allow the heuristics to be used 
one-to-one in our system-level design framework. In this paper we combine our 
communication modelling approach with global optimization techniques to 
perform design space exploration and improvement of synthesized schedules. 
The paper is organized as follows. In Section 2 we introduce our system-level 
model and the NoC platform. In Section 3 we describe the usage of two schedule 
optimization techniques and design space exploration in our framework. Experi-
mental results are given in Section 4 followed by conclusions. 

 
 

2. SYSTEM-LEVEL  MODEL 
 
One of the important points in the design space exploration is speed. One 

could simulate an application to get more accurate results, but this is usually 
slow. Therefore, we abstract the implementation details of the network-on-chip 
and perform design space exploration on a high level of abstraction. However, 
our approach keeps the communication modelling as precise as possible. 

Input to our system-level design flow is application ,A  NoC architecture N  
and application mapping M  (Fig. 1). Application is specified by a directed 
acyclic graph ( , ),A T C=  where { | 1, , }iT t i T= = K  is a set of vertexes 
representing non pre-emptive tasks, and ,{ | ( , ) {1, , } {1, , }}i jC c i j V x V= ∈ K K  is 
a set of edges representing communication between tasks. Each task it  is 
characterized by the worst case execution time (WCET) .iWcet  Tasks can be 
completed earlier than their WCET but communication between the tasks needs 
to be initiated at their respective scheduled time periods to avoid network 
conflicts. This is controlled by the sender network interface. Therefore, no 
customization of routers is needed. NoC platform introduces communication 
latency that depends not only on the  message size,  but also on the resource map- 
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Fig. 1. System-level design flow. 
 
 

ping and needs to be taken into account. Therefore, in addition to message size 
the edge is characterized by communication delay (CD) , .i jCd  We assume that 
the application has dummy start and end vertices. 

The NoC architecture can be modelled as a directed graph ( , ),N R L=  where 
{ | 1, , }kR r k R= = K  is a set of resources and ,{ | ( , )k lL l k l= ∈  

{1, , } {1, , }}R x RK K  is a set of links connecting a pair of resources ( , ).k l  The 
mapping M  of an application A  is represented by the function ( ).M T R→  The 
architecture is characterized by operating frequency, topology, routing algorithm, 
switching method, link bit-width and the delay model of the network interface and 
routers. 

We assume that each processing core is controlled by a scheduler that takes 
care of the task execution on the core and schedules the message transfers 
between the tasks. Otherwise a task that completes earlier than its calculated 
WCET and starts a message transfer could lead to an unexpected network 
congestion and have a fatal effect on the global execution schedule. The schedule 
is calculated offline and a partial schedule is stored in each local scheduler 
memory. We assume that the size of an input buffer is one packet in the case of 
virtual cut-through or store-and-forward and one flit in the case of a wormhole 
switching method. No output buffering is used. The input buffer of one flow 
control unit together with its incoming communication link can be considered as 
one shared resource during the communication synthesis. It also requires 
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minimum hardware resources from a router. To have a predictable communica-
tion model, we assume the use of deterministic routing algorithms. In our experi-
ments we are using a dimension-ordered XY routing. Our communication model-
ling, synthesis and scheduling approach is explained in greater detail in [2,3]. 

Once the tasks have been mapped to the architecture, an iterative process 
starts (Fig. 1). It consists of communication synthesis and task scheduling. The 
produced schedule is verified by running an application simulation on a NoC 
simulator or a design space exploration performed that will try to improve the 
task mapping and schedule. If the design requirements are met, the lower levels 
of HW/SW co-design processes continue. Otherwise changes are needed in the 
architecture or in the mapping. 

The goal of this paper can be formulated as follows. Given application ,A  a 
NoC architecture N  and a mapping ( ),M T R→  our goal is to perform design 
space exploration and optimization of the initial design with respect to schedule 
length and to produce a set of feasible near-optimum design options. At the same 
time, we also measure the calculation time that is used to define the trade-off 
between the improvement, gained during optimization and the time spent for 
calculation. Our goal is not to propose any enhancements to optimization 
methods, but to show that our communication modelling and synthesis approach 
can be applied to arbitrary scheduling or optimization method. 

 
 

3. DESIGN  SPACE  EXPLORATION  AND  OPTIMIZATION 
 
Networks-on-chip are flexible communication platforms with computation 

being decoupled from communication. The available flexibility increases the 
amount of design options that need to be explored. Application mapping has a 
major impact on the schedule length, NoC performance and power consump-
tion [1]. Depending on the level of freedom there are two options – to explore 
different application mappings or to improve a schedule, based on a given 
mapping. Our ultimate goal is to perform design space exploration and optimiza-
tion at the same time.  

First we will describe the approach to a given application with a fixed 
mapping on a NoC. The initial schedule is produced by applying a modified list 
scheduling as described in [2,3]. List scheduling is a greedy heuristics using a 
priority list and precedence constraints to schedule the tasks and to minimize the 
schedule length. The algorithm is straightforward to implement and it has a low 
calculation time. The algorithm could be also implemented on-chip, allowing 
dynamic re-configuration and resulting in improved application fault tolerance. 
However, to get an optimum solution, one would need to schedule all possible 
task sequences, reaching in worst case n! permutations. We are using branch-
and-bound and simulated annealing global optimization techniques to explore the 
trade-off between improvement in schedule length and time spent for calculation. 
Second, we will perform a design space exploration with simulated annealing in 
order to compare it to the schedule optimization. 
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3.1. Schedule  optimization  with  branch-and-bound 
 
Branch-and-bound (B&B) is a general algorithm for finding optimal solutions 

for various computationally intensive optimization problems. Branch-and-bound 
consists of three main functions – branching, bounding and pruning. Branching 
describes the problem as a search tree, whose nodes are subsets of the given 
problem. Bounding calculates the upper and lower bounds that are used to 
evaluate a set of candidates and to prune the ones that do not lead to an optimum. 

We are exploiting B&B in the following way. We maintain a partial schedule 
and a list of ready tasks for every B&B tree node. We have a sorted list of all 
partial schedule lengths and we are choosing a node to branch, based on a best-
first strategy. We have also evaluated a breadth-first search, but it did not 
improve the calculation speed. Each ready task of a node being expanded will be 
added into the B&B search tree and stored also in the partial schedule list. Such a 
branching strategy avoids infeasible solutions and reduces the number of 
calculations. The partial schedule length is calculated, based on the order of tasks 
in the partial schedule list. The rest of the tasks are scheduled by list scheduling 
that gives us a tight upper bound. The lower bound lB  is calculated as in [5]: 

 

t
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= +∑

∑
                                           (1) 

 

where WCET is the total of unscheduled tasks, pcN  is the number of processing 
cores and pS  is the partial schedule length. 

After that, we evaluate all candidate solutions. We prune the nodes that have 
their lower bounds higher or equal to the global best upper bound. The process 
continues until there are no more nodes to expand. An example of the branch-
and-bound calculation process is depicted in Fig. 2. The application consists of  
 

 

 
 

Fig. 2. An example of branch-and-bound result conversion. 
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100 tasks mapped on a 6 × 6 2D-mesh NoC. List schedule length is 9226 µs 
while branch-and-bound result gives almost 15% of improvement (7882 µs). 
However, the calculation time increases 71 times from 0.12 to 8.53 s. 

 
3.2. Schedule  optimization  with  simulated  annealing 

 
Simulated annealing (SA) is a probabilistic metaheuristic for the global 

optimization problem, locating a near-optimal solution in a feasible amount of 
time [14]. The simulated annealing comprises creating an initial solution that will 
be annealed by generating moves in the neighbourhood. Result (cost) of a move 
is calculated based on a target function and compared to the currently known best 
value. In our case the cost function is the application schedule length. The 
cooling schedule controls the decrease of temperature, which has an effect on the 
move energy. The process continues until a termination condition has been met. 

In simulated annealing it is important to find feasible values for initial para-
meters: the initial temperature (related with initial acceptance probability) and the 
cooling schedule. When the initial temperature is too high, many bad uphill 
moves might be accepted driving SA far away from the reasonable solution 
space. When it is too low, SA might not reach solutions, which require more 
energy to cross higher hills to reach a global optimum. To estimate the initial 
temperature, we use the approach, described in [15]. First, we create an initial 
solution. Next, we generate n  random moves and record the difference between 
the initial solution and the random move and calculate the average difference 

av( ).D  The initial temperature inT  can be estimated as 
 

2
in in av(1 log ( )) ,T p D= −                                        (2) 

 

where inp  is the initial probability to accept uphill moves. In our experiments we 
have used in 0.9.p =  We have used an exponential cooling schedule, described 
by the following equation: 

 

new ,T Tα=                                                    (3) 
 

where α  is a constant (in our experiments usually between 0.7–0.96) and T  is 
the current temperature. 

An acceptance criterion is needed to overcome local optimums and accept 
uphill moves. One of the most common is the Metropolis acceptance criterion: 

 

acc ,E kTp e ∆−=                                                  (4) 
 

where E∆  is the difference of the object function between the modified solution 
and the current one and k  is the Boltzman constant [16]. The acceptance 
probability accp  is compared to a random value, generated uniformly in the range 
of [0,1].  The probability of accepting uphill moves decreases with the tempera-
ture and with the increase of .E∆  Therefore selection of the initial temperature, 
probability and cooling schedule is important for the performance of SA. 
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When optimizing the schedule (having fixed mapping) with simulated anneal-
ing, a neighbouring solution is created by selecting randomly a task and randomly 
increasing or decreasing its priority in the ready list. For this we record during 
scheduling the tasks that are ready at the same time. The distance rtM , to which a 
random task can be shifted in the queue, is controlled by the following formula: 

 

rt rl in( ) ,M Q T T=                                              (5) 
 

where rlQ  is the size of the ready list. 
In literature various termination conditions can be found. In our approach we 

specify the number of temperature levels tN  we are annealing at minimum, until 
we stop the process. The counter is incremented when we have found a better or 
equal solution compared to the previous one. The counter is reset to zero when a 
higher result is found as we might have recovered from a local optimum and it 
would need further examination. At each temperature we are creating at minimum 

tN  random neighbourhood solutions. The counter is incremented when an uphill 
move is rejected and decremented when a solution is accepted. The idea is 
essentially to keep the process on the same energy level until it stabilizes and only 
then lower the temperature. The pseudo-code of simulated annealing is depicted in 
Fig. 3. 

 
 

Fig. 3. Pseudo-code of simulated annealing. 

Simlated Annealing (alpha, Tinitial, Nallowed_temperatures, Nallowed_peturbations) 
1  Construct initial solution Scurrent; 
2  Current temperature T = Tinitial; 
3  Global best solution Sglobal = ∞;  Ntemperatures = 0; 
4 
5  While Ntemperatures < Nallowed_temperatures  Do Begin 
6   Number of peturbations Npeturb = 0; 
7   While Npeturb < Nallowed_peturbations Do Begin 
8    Generate randomly a neighbouring solution Sneighbor 
9    Calculate Sneighbor schedule length 
10   ∆E = Sneighbor – Scurrent; 
11 
12   If ∆E<0 Then 
13    Scurrent = Sneighbor;  Npeturb = 0; 
14   Else 
15    Generate random value r = uniform_random(0, 1); 
16    If r ≤ e-∆E/T Then 
17     Scurrent = Sneighbor;   Npeturb = Npeturb - 1; 
18    Else 
19     Npeturb = Npeturb + 1; 
20    End If; 
21   End If; 
22  End; 
23   
24  If Scurrent <= Sglobal Then 
25   Sglobal = Scurrent;  Ntemperatures = Ntemperatures + 1; 
26  Else 
27   Ntemperatures = 0; 
28  End If; 
29  Set T = alpha*T;   
30 End; 
End Simulated Annealing; 
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Fig. 4. An example of simulated annealing results. 
 

 
Figure 4 depicts example results of simulated annealing having the same 

application and platform as with branch-and-bound. The simulated annealing 
schedule length is 7988 µs, which is 13% better than a schedule produced by list 
scheduling (9226 µs) and close to the branch-and-bound result (7882 µs). The 
SA calculation time (96 s) is 800 times higher than for list scheduling and 11 
times higher compared to B&B. 

 
 

3.3. Design  space  exploration  with  simulated  annealing 
 
When schedule optimization does not give the required amount of improve-

ment we can go for design space exploration and find an alternative mapping that 
could give better results. We are using the simulated annealing approach for that. 
Design space exploration is performed by selecting randomly a task and re-map-
ping it to another processing core. The distance between original and re-mapped 
core (number of hops) is controlled by cooling. Initially, the distance can be 
higher while eventually reaching one hop (nearby cores). To evaluate cost of the 
move we need to perform each time communication synthesis and schedule the 
tasks and the communication. Figure 4 depicts combined results of a simulated 
annealing schedule optimization and a design space exploration. It can be seen 
that the design space exploration resulted in a mapping that gave the best 
schedule length 7264 µs, compared to B&B (7882 µs). However, the calculation 
time was around 11 times longer (96 s) compared to B&B. We have performed 
an experiment were application with 100 tasks and 30 arbitrary mappings were 
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given and design exploration was run with simulated annealing. An average 
schedule length of 7324 µs was achieved, which is less than 1% different from 
the best result. It shows that general purpose heuristics can be used effectively to 
solve specific design space exploration problems. 
 

 
4. EXPERIMENTAL  RESULTS 

 
We have built a design environment that supports the system-level model and 

optimization framework described in the previous sections. We have chosen 
synthetic task graphs, containing 100, 500, 750 and 1000 tasks, to show scaling 
of the global optimization on big applications. The NoC platform we have used is 
a 2D 6 × 6 mesh, having an operating frequency of 500 MHz, a link bit-width of 
32 bits, a packet-size of 512 bits (flit-size 32 bits), and a wormhole switching 
with dimension-ordered XY routing. The computing resources are homogeneous 
– the task WCET is the same on all resources. The tests were performed on a 
computer with Intel L2400 CPU (1.66 GHz), 1 GB of available physical RAM 
and operating system Microsoft Windows XP. As simulated annealing depends 
heavily on the quality of the random number generator, we have run 20 tests in a 
batch varying the random number generator seed. We depict the minimum, 
maximum and average result. The SA initial parameters were chosen as 
described in Section 3.2. Task mapping was generated by an external tool for 
each application and the same mapping was used in all experiments.  

The results in Table 1 show that all the optimization techniques have pro-
duced a better schedule than the list scheduling (LS). However, this is achieved 
at the cost of increased calculation time. For applications with 750 and 1000 
tasks, the schedule optimization with SA was not able to produce a result in 
feasible amount of time. When we compare different optimization techniques it 
can be seen, that branch-and-bound has given from 10% to 15% of improvement 
with lowest calculation time. As we create only valid solution branches in the 
B&B, this reduces rapidly the number of iterations, reaching the solution faster 
than simulated annealing. The simulated annealing performance could be 
increased by a more efficient way to generate the neighbourhood, where a change 
of the existing solution is created. Design space exploration with SA reached  
 
 

Table 1. Comparison of the optimization techniques 
 

Shedule length, µs Calculation time, min 

SA Exploration with SA 

Num-
ber of 
tasks 

List 
shedule

Branch- 
and- 

bound 
Min Avg Max Min Avg Max 

LS B&B SA Expl. 
SA 

100 9 226 7 882 7 988 8 488 8 719 7 264 7 367 7 998 0.003 0.1 1.3 1.8 
500 18 496 16 728 18 019 18 112 18 206 16 916 17 522 18 265 0.03 13.7 34.7 18.2 
750 32 127 28 932 NA NA NA 28 150 29 217 30 193 0.05 35.5 NA 33.6 

1000 36 772 33 103 NA NA NA 33 642 33 733 34 086 0.10 85.9 NA 267.3 
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a similar schedule optimization as B&B, but the calculation time explodes with 
the increase of the application size. It is important to note, that in the design 
space exploration communication must be synthesized for each modified 
solution. In the schedule optimization, it is needed only to re-schedule the tasks 
and communication that is less time consuming. 

 
 

5. CONCLUSIONS 
 
In this paper we have presented branch-and-bound and simulated annealing 

optimization techniques in order to estimate and improve the schedule length and 
to perform design space exploration in our system-level design framework. The 
framework models communication at the link level, using a traditional task graph 
based modelling technique and supporting various switching techniques. The 
results show, that this communication modelling technique can be used with both 
of the presented optimization methods, gaining improvement in schedule length 
by re-ordering or re-mapping the tasks. 
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Kiipvõrkudel  põhinevate  keerukate  kiipsüsteemide   
optimeerimine  süsteemitasemel 

 
Mihkel Tagel, Peeter Ellervee, Thomas Hollstein ja Gert Jervan 

 
Kommunikatsiooni modelleerimisel ja sünteesil on oluline roll keerukate, kiip-

võrkudel põhinevate kiipsüsteemide disainil. Ilma detailse arusaamiseta kiipide-
vahelisest kommunikatsioonist on aga raske anda hinnangut süsteemi ajalisele 
käitumisele ja garanteerida selle vastavust nõuetele. Artiklis on esitatud kommuni-
katsiooni modelleerimise ja sünteesi meetod, mis võimaldab leida andmeülekan-
deks kuluva aja, võttes seejuures arvesse võimalikke võrgukonflikte. On kirjel-
datud selle kommunikatsiooni modelleerimise meetodi kombineerimist erinevate 
globaalsete optimeerimisalgoritmidega eesmärgiga leida efektiivsem ülesannete 
planeering ja jaotus kiipsüsteemi protsessoritel. 

 


