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Abstract. Autonomous embedded computers that form a sensor network can be applied in various 
fields. In the domain of industrial manufacturing, sensor networks can be employed for detecting 
events or phenomena of interest at the shop floor. Sensor network nodes collect and process data, 
transmitting sensed and fused information either to a central database or directly to the handheld 
computer, used by the production manager. Smart dust can be used at CNC machine tools for 
measuring vibration, noise and other essential parameters. These parameters can give a signal for 
unsuitable cutting conditions. Implemented experiments were made using wired solutions, but 
wireless solutions are proposed. The proposed solution helps to detect changes in shop floor and 
predict possible problems, thus avoiding unplanned pauses in production. It is shown that different 
working modes can be detected using in-process monitoring. 
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1. INTRODUCTION 
 
High utilization and fault detection of metal working machinery is an issue of 

high importance in industrial applications. Operation in an undesirable mode can 
cause poor production quality, perversion of the material but also in extreme 
cases tool failures and damages to the machinery. Two of the last damages are 
especially harmful for production, causing unplanned breaks in production and 
delays in fulfilling customer orders.  

The process of developing metal working machinery is ongoing. Building up 
more sophisticated working processes, using wear resistant tool materials, raising 
speeds and powers permit the production of more complicated parts and also 
shorten the time of machining. The increased efficiency and speed of production 
may also result in faster changes in the manufacturing equipment state – the step 
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from the regular working process to an unstable condition is potentially also 
shorter. As a result, the machinery in modern manufacturing process requires 
effective on-line monitoring and fault prediction. 

Machinery monitoring options are rarely mentioned in case of new machinery. 
In case of modern manufacturing equipment, a monitoring system is assumed to 
be part of the machinery. However, in many cases the manufacturing equipment 
can be destroyed either because of a wrong mode of operation or trivial part 
failures without any advance indication of potential problems from the on-board 
monitoring system. The main reason for this is the fact that a complex monitoring 
system increases the cost of the machine, which is a competitive disadvantage in 
the low budget metal working machinery market. 

Machinery that is 30–40 years old is typically quite massive, which assures 
stable machining and suppresses vibrations. These properties make such machines 
valuable and they are still running at shop floors for tens of years. The main 
disadvantage of such machines lies in the fact that they are not equipped with a 
monitoring system or the functionality of the latter is too limited. 

The above-mentioned cases require installation of a modern wireless monitor-
ing system to maintain the advantages of the existing machinery and ensure safe 
operation on the manufacturing floor. Installing a monitoring system, based on 
wireless sensor nodes, is relatively cheap and it can be fitted to both old and 
modern manufacturing equipment.  

Attaching embedded computers with a wireless communication interface, 
which form a wireless sensor network (WSN), onto machinery for monitoring 
machinery condition keeps the price of the solution reasonable, but provides 
extra safety to the existing process. The installation cost of cables in an industrial 
plant can vary greatly based on the type of plant and physical configurations. 
Studies have shown that average cable installation cost is between 10 and 100 $ 
per foot [1], but in a nuclear plant even 2000 $ per foot. 

Research in the field of smart dust was started as a research project in 1997 by 
University of California computer science professor Kris Pister. A smart dust 
mote is a tiny computer equipped with a processor, some memory, a wireless 
communication interface, an autonomous power supply and a set of sensors 
appropriate for the task at hand. In order to prolong the battery life, the motes are 
activated only when communicating or processing the data. When the smart dust 
concept was introduced (this is true also currently to a certain extent) it was very 
advanced compared to existing solutions as it potentially enabled to build net-
worked intelligence into everything from walls to laptop computers. In the last 
decade many studies have been performed to transform the dream into reality. 
Examples can be brought from machinery monitoring research community where 
the technology has been applied in condition monitoring in end-milling [2] and in 
drilling machines [3]. Controlling of a programmable machining system has 
proved to be an exceptionally difficult problem due to the protocol and inter-
facing [4]. 
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In condition monitoring applications, a parameter (or several parameters) that 
reflect the state (condition) of the machinery is (are) monitored. Before a condition 
monitoring application can be deployed, models are developed that reflect the 
correlation between the state of the machine and the monitored parameter. Several 
parameters can be combined in order to obtain clearly understandable results. From 
the value of the parameters the state of the machine is then estimated at runtime, 
enabling the detection of failures and critical modes of operation. Condition 
monitoring is one of the major components of predictive maintenance. The use of 
condition monitoring allows maintenance to be scheduled, or other actions to be 
taken to avoid the consequences of failure, before the failure occurs. Nevertheless, 
a deviation from a reference value (e.g. temperature or vibration behaviour) must 
occur to identify upcoming damages. Predictive maintenance does not predict 
failure. It only helps to predict the time of failure. The failure has already started 
and the sensor system can only measure the deterioration of the condition. Early 
planned pauses in manufacturing for changing some parts are more cost effective 
than allowing the machinery to fail.  

However, the WSN based monitoring solutions pose some restrictions to the 
monitoring approach. As the communication bandwidth is quite limited (when 
compared to conventional wired networks), the objective is to process the data 
acquired via sensors locally to the highest level of abstraction possible and to 
communicate only a limited amount of data. The issue of limited bandwidth is 
elevated by the fact that potentially the number of sensing points is high, so only 
high-level information should be communicated via the network [5]. In addition, 
the WSN nodes are typically battery powered and with limited computational 
capacity, which means that the algorithms employed in the nodes should have 
low requirements for the computational power. This study provides source 
information for the evaluation of data processing algorithms and methods that 
can be employed in the manufacturing equipment monitoring. 

In the monitoring process, the cutting force ratio is used to predict the in-
process surface roughness regardless of the cutting conditions. Using regression 
analysis, regression coefficients are calculated and used in the surface roughness 
prediction model for the turning machine. This exponential function represents 
the relation between surface roughness, the cutting force ratio and other cutting 
parameters [6]. 

The aim of the paper is to present first steps in the concept of measuring and 
identifying operation modes of machinery for detecting unwanted machining 
status and preventing tool braking.  

Prototype measuring devices were designed and assembled and experiments 
were conducted in a controlled environment. Measured parameters were accelera-
tion for detection of the vibration and acoustic signals. Experiments were con-
ducted on a turning machine. 
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2. ACCELERATION  MEASUREMENTS 

2.1. Measurement  method 
 
Vibration of the unit was measured with a solid-state micro electromechanical 

system (MEMS) accelerometer LIS3LV02DQ. This device is capable of measur-
ing acceleration in three directions in the range of ± 2g at 12 bit resolution. 
Gravity of Earth was eliminated from measurement results. This sensor type was 
selected as it has a suitable measurement range and accuracy, small footprint 
(7 × 7 × 2 mm), internal digital conversion unit with built-in noise filtering, 
suitable electrical interface and is readily available in prototyping form. The 
same sensor can be used in the final and optimized WSN as it has suitable 
electrical interface (SPI) and very low power requirements (0.8mA@3.3V). The 
sensor was interfaced to a computer during the experiments via the low-voltage 
SPI bus. An additional data acquisition/interface board was installed between the 
sensor and the main data acquisition computer as the computer was not equipped 
with the SPI interface. The data acquisition board was a WSN node prototype, 
based on the Atmel AVR XMEGA microcontroller. As the data acquisition board 
is essentially a fully fledged WSN node, it is also capable of reading sensor data, 
buffering it and later forwarding it to the computer in serial (RS232) format. 
Considering the constraints of the interface board memory, processing power and 
serial communication acquisition speed, the sampling frequency 640 samples/s was 
chosen. It may be desirable to use a higher sampling frequency, but in order to 
acquire data for all the axes some tradeoffs had to be made. Since the frequency of 
the vibrations, generated in the monitored equipment, were not known, the sampl-
ing frequency used served as a starting point to evaluate the possible monitoring 
solutions applicable for the given device. The measuring period for each sampling 
session was 30 s. The resulting data sets consist of 19 200 samples for each axis. 

In the final and optimized WSN the serial (RS232) data link will be replaced 
with a wireless communication module that is already present on the prototype 
board. Depending on the analysis results and firmware, it is possible to transmit 
live measurement information continuously or only just the identified state of the 
machinery being monitored. 

 
2.2. Measurement  process 

 
All measurements were made on a CNC turning machine 16A20F3RM132. 

The acceleration sensor was bolted to the CNC turning lathe carriage and 5 sets 
of data acquisition experiments were conducted. Accelometer also measures 
gravity of Earth and its influence is unequal in all 3 axes. For better clarity and 
comparability of results, gravity of Earth was eliminated from acceleration 
measurement results before data processing. 

Tests 1 and 2 were made just with an empty spindle at speed 2400 min–1. 
Test 3 was made at spindle speed 600 min–1, feed rate 0.3 mm/s with real turning. 
Test 4 was made at spindle speed 2400 min–1, feed rate 0.3 mm/s with real 
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turning. Test 5 was made at spindle speed 600 min–1, feed rate 0.3 mm/s with real 
turning. Tests 4 and 5 also include an event of failure. The result of failures in 
tests 4 and 5 was tool breakage. Test parameters are shown in Table 1. 

 
2.3. Analysis  of  the  results 

 
Results were analysed in the time domain. Mean values of the acceleration 

series are stable and this means that sensor was fixed reliably during the whole 
measuring process. 

Standard ranges of the acquired data series that are presented in Table 2 show 
extreme values in test 4, but also high value in test 5. Both of these tests include 
tool breakage. The results of the other tests are quite similar to each other. 
Distinction between different modes of the turning lathe can be observed better in 
graphical representation of the acceleration values presented in Figs. 1–5, corres-
ponding to tests 1–5. Every figure contains measurements of acceleration in three 
directions, presented in same scale. 

First tests were made only with the turning spindle, without cutting process. 
The reason was to get 0-level background for the tests 3–5. Tests 1 and 2 that 
were conducted with exactly the same turning parameters show that their value 
difference is negligible (max 7% in z axis). It shows that test results are repeat-
able and test values are reliable. 

Comparison of tests 3 and 5 illustrates the difference between normal opera-
tion and failure during operation. Tests 3 and 5 were made with the same opera-
tional parameters. The only difference was the failure of the tool. The y axis 
value was 24% higher in fault situation than in normal operation mode. This 
distinction allows fault identification. 

 
 

Table 1. Acceleration test parameters 
 

Test 
No. 

Spindle speed, 
min–1 

Feed, 
mm/rev 

Turning Failure Linear velocity, 
m/min 

1 2400 0    
2 2400 0    
3 600 0.3 x  180 
4 2400 0.3 x x 723 
5 600 0.3 x x 180 

 
 

Table 2. Acceleration range values along different axis during  
the measuring period 

 

Test No. x y z 

1 116 160 88 
2 119 156 94 
3 125 161 89 
4 185 234 385 
5 133 200 94 
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Fig. 1. Noise floor level test No. 1. 
 
 

 
 

Fig. 2. Noise floor level test No. 2. 
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Fig. 3. Normal working mode test. 
 
 

 
 

Fig. 4. Fault situation test in high speed. 
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Fig. 5. Fault situation test in normal speed. 
 
 
Tests 4 and 5 illustrate rapidly growing vibration in breaking situation at 

higher spindle speeds. With higher spindle speeds the failure pattern is more 
distinct. 

 
2.4. Conclusions  from  the  measurement  results 

 
It is possible to identify different modes of operation and predict fault situa-

tions by measuring acceleration of the turning lathe carriage. The identification 
task is simpler at higher spindle speeds as the pattern is more distinct in that case. 
Important is to detect changes in early stage to take the action for avoiding faults. 
For getting more reliable and more specific feedback, a group of sensors is to be 
used. 

Instead of or in addition to the accelerometer, also piezoelectric sensors could 
be used for detecting vibration values. Piezoelectric sensors can measure with 
higher frequency, but only in one direction. Measuring with higher frequency can 
bring out more distinct information and help in analysing section. 

Deeper data analysis is needed to find informative patterns to detect machin-
ing variations in early stages to avoid faults and unplanned pauses in manufactur-
ing. Regression analysis and artificial neural networks are options in creating 
operative sensor network feedback model. 
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3. ACOUSTIC  MEASUREMENTS 
 

3.1. Measurement  method  and  description 
 
Acoustic signal of the unit was measured with SM58 microphone and the 

analogue signal was converted to digital using Roland Edirol UA-25EX audio 
signal processor. The digitized signal was recorded in a PC. All measurements 
were made on the CNC turning lathe 16A20F3RM132. The microphone was 
positioned near the cutting area. The acoustic signal was sampled at a sampling 
rate of 22 050 Hz and recorded to a wav file in the PC. Data was sampled during 
a turning work cycle (starting up the engine, turning, turning fault and turning off 
the engine). 

 
3.2. Measurement  results 

 
Operation mode classification was made by applying spectral analysis to the 

sampled signal. Fourier transforms were performed on sections of recorded 
samples acquired during different modes of operation and the resulting frequency 
spectrums were compared with each other.  

Figure 6 represents the spectrums of signals acquired in different modes of 
operation. In mode 1 the feed engine works only, in mode 2 the spindle engine is 
turned on, in mode 3 the lathe is in normal operational mode and in mode 4 a 
fault occurs. 

 
 

 
 

Fig. 6. Modes 1–4 in turning. 
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Fig. 7. Acoustic signals in different modes. 
 

 
The spectrums of signals acquired in modes 2 and 3 are similar and dis-

tinguishing them from each other is difficult. For that reason the spectrum for 
mode 3 is discarded and only the spectrums of signals acquired in modes 1, 2 and 4 
are analysed. In Fig. 7, acoustic signals are measured with 0.2 s interval. The whole 
length of the test was 40 s. Figure 7 shows a different pattern of the signal in the 
feed engine working mode, turning mode and in the occurrence of a fault. 

 
3.3. Conclusion  of  the  measurement  result  analysis 

 
Acoustic measurements identified 3 different recognizable operating modes. 

In this case acoustic and acceleration measurements were made separately. But 
combining and comparing these with each other can give more precise 
information for creating the model. 

Various acoustic signals, common in shop floor and other machineries, can 
cause extra noise and influence measured acoustic signal. For this reason, using 
piezoelectrics sensors can give more reliable information. When acoustic sensor 
measures air vibrations then piezoelectric sensor measures practically the same 
vibration from the solid part surface, without air involvement. 

 
 

4. MONITORING  WITH  SMART  DUST 
 
The tests described in the paper were performed using wired sensors. For real 

applications in the manufacturing floor it is essential to employ wireless sensors 
that are integrated to an e-manufacturing system [7]. As suggested in the 
introduction, wireless sensors or smart dust motes can be used in such monitoring 
applications in addition to the wide range of other smart dust potential applica-
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tions [8]. Smart dust motes can be equipped with a wide range of sensors, so 
depending on the application the properties of a smart dust mote can vary sub-
stantially as the processing unit of the mote may be also different, to be able to 
process the data collected by the sensors. 

For monitoring various types of machinery (and different properties of 
specific manufacturing equipment), different sensors must be used and the motes 
must be assembled correspondingly from modules. Different smart dust motes 
can be equipped with different sensors and the processed measurement results 
can be exchanged between the motes and fused in the field by the motes 
themselves. This allows the generation of data with high reliability directly in the 
field, reducing potentially the bandwidth requirements of the system and making 
it possible to increase the number of sensing points by installing a greater number 
of sensors and motes on the equipment. 

So far the manufacturing reports are generally created through manual trigger-
ing by the user. However, especially for standard reports, it makes sense to have 
the option to use automatic, timed report creation. The proactive distribution of 
important information through the manufacturing execution system is especially 
useful in connection with mobile end devices [9]. We could include motes in this 
report chain, as proved in this research. 

Biggest challenge for smart dust is to achieve noiseless data transmission in 
the manufacturing environment. Electromagnetic interferences can be decreased 
to a minimum by increasing the number of motes and placing them closer. 

 
 

5. FURTHER  RESEARCH 
 
The test results presented in this paper are just a little touch of machinery 

monitoring. Further research is required to develop and implement practical 
solutions. 
1. Comparison of different type of sensors, measuring values and their analysis 

results from the perspective of pattern intensity. 
2. The optimal sensor placement must be determined for every type of machine 

in order to acquire the parameters of interest. 
3. Manufacturing equipment must be categorized from the monitoring perspective 

to develop and employ fixed configurations of monitoring equipment on 
different machines.  

4. In order to determine the tool wearing pattern, experiments must be conducted 
also with different tool wear levels. 
 
 

6. CONCLUSIONS 
 
Experiments showed that different modes of operation of the manufacturing 

equipment can be determined using basic sensors and signal processing methods. 
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Measurements made with the accelerometer show the vibration range that allows 
distinguishing fault situation from normal operation. Acoustic measurements 
permit to distinguish idle operation, normal operation and fault situation. 

In order to implement an automated monitoring system for manufacturing equip-
ment, the patterns for different modes of operation must be determined initially, after 
which the WSN technology can be used to detect the modes of interest. 
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Arupuru rakendused  tootmisprotsesside  seirel 
 

Tanel Aruväli, Risto Serg, Jürgo Preden ja Tauno Otto 
 
Üks potentsiaalne arupuru kasutusvõimalus tööstuses on tsehhis huvipak-

kuvate protsesside seiramine ja eriolukordade avastamine. Kübemed koguvad  
ja töötlevad andmeid, edastades valitud info kas kesksesse andmebaasi või otse 
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tootmisjuhi käsiseadmesse. Käesolevas artiklis on käsitletud arvjuhtimisega 
tööpingi vibratsioonide ja müra mõõtmist, kuid arupuru võib kasutada ka tem-
peratuuri ning teiste oluliste parameetrite mõõtmiseks. Esitatud lahendus või-
maldab tuvastada tsehhis muutusi tehnoloogiaseadmete tööprotsessis ja 
prognoosida võimalike probleemide teket, vältides nii tootmises planeerimata 
remondipause. 


