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Abstract. It is pointed out that large carnivores such as wolves prey on weak individuals in 
ungulate populations, which results in a healthier local ungulate population. However, this 
hypothesis has not been fully evaluated. The purpose of the paper is to examine whether human 
hunting can improve the health status of local ungulate populations. To accomplish this, we focus 
on disease and build an epidemiological Susceptible�Infected�Recovered model. On the basis of 
numerical simulations of our model, we demonstrated that although human hunting helps prevent 
the spread of disease, it does not help in the selective removal of infected individuals in a 
population. 
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INTRODUCTION 
 

Human hunters often regard large carnivores such as wolves and lynxes as their 
competitors in the hunting of ungulates and other game animals. Due to this 
perception and other reasons, large carnivores have been persecuted throughout 
their geographic range, which has occasionally resulted in the extinction of a 
species at the regional or national level. For example, according to the International 
Union for Conservation of Nature and Natural Resources (IUCN) 2008 Red List 
of Threatened Species (http://www.iucnredlist.org/details/3746) wolf (Canis lupus) 
has become regionally extinct in Austria, Belgium, Ireland, Japan, Luxembourg, 
the Netherlands, Switzerland, and the United Kingdom, and is possibly extinct in 
Bangladesh as well. The present range of wolves is much more restricted than it 
used to be. 

At least two criticisms can be levelled at this stern reality of persecution. First, 
there must be some positive or beneficial aspects of large carnivores towards 
ungulates, and we have yet to recognize the value of these aspects. Some instances 
can easily be adduced. For example � as far as the author is aware since this line 
of argument is not often presented � large carnivores and other wild carnivores 
consume carcasses of wild animals; this consumptive behaviour may be effective 
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in preventing diseases from spreading provided the diseases are not infectious  
to large carnivores. Associated with this, as an increasing number of studies have 
pointed out recently, wolves attack weak individuals such as the sick, the infirm, 
the physically handicapped, and/or juveniles. Such predation by wolves contributes 
to the maintenance of a healthy ungulate population (Schaller, 1972; Moore, 2002; 
Packer et al., 2003 for the case of predators in general; Skonhoft, 2006: 832; 
Kawata, 2007: 58). In addition, predation by large carnivores can regulate prey 
populations and this can lead to a reduction in agricultural and forestry damage 
caused by ungulates. 

Second, given these beneficial aspects of carnivores and the effectiveness of 
their hunting, which contribute to the maintenance of healthy ungulate populations 
as mentioned above, it is doubtful whether human hunters can substitute the 
ecological role played by large carnivores. On the one hand, large carnivores � 
at least, wolves � can easily detect weak individuals that are more susceptible to 
attack. On the other hand, human hunters often chance upon healthy individuals 
in an ungulate population and kill them; moreover, some have a tendency to 
preferentially hunt big and/or strong individuals. This leads us to the question 
whether human hunters can contribute to improving the physical condition of local 
ungulate populations as large carnivores do. 

In this paper, I pose the following two questions: (1) Can human hunters 
prevent the spread of disease among ungulates? and (2) Can human hunters help 
eradicate disease among individuals in an ungulate population? In what follows, I 
build a mathematical model and use numerical simulations to examine the above 
two questions. 

 
 

MATERIALS  AND  METHODS 
Mathematical  model 

 
A basic model employed in epidemiology is the Susceptible�Infected�Recovered 
(SIR) model, which can be traced back to Kermack & McKendrick (1927), or 
more directly to Anderson & May (1979), May & Anderson (1979), Anderson 
(1991). Many models have since been derived from or are modified versions of 
the SIR model. In what follows, to simplify the model and numerical simulations, 
we ignore the aspect �Recovered�. 

Suppose that we manage a local population of an ungulate species and that 
each individual in the population can be classified as either susceptible to or 
infected with a disease agent. Susceptible individuals are those for whom the 
possibility of being infected exists, and some of the infected individuals will 
get sick and die. Hereinafter, we denote the number of susceptible and infected 
individuals as S  and ,I  respectively. 

We further suppose the following. Both susceptible and infected individuals have 
the same reproductive ability, and the birth rate is a decreasing density-dependent 
function of the total population ,N  which is the sum total of S  and .I  Then, the 
birth rate can be described as 1 2( ) .b N b b N= −  If a foetus is infectible, then the 
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term ( ) ,b N N  which represents the number of newborn individuals, should be 
included in the equation of susceptible individuals. Suppose that the death rate is 
an increasing function of population density and is described as 1 2( )d N d d N= +  
and ( ) ( ) ( ) .d N N d N S d N I= +  The rate of increase in the number of infected 
individuals is proportional to the product of the number of susceptible individuals 
and infected individuals. Let the transmission rate be (0 1);α α≤ ≤  the increase 
rate is given by .SIα  Suppose that the harvest by hunters is proportional to the 
population size and described as ,H S Iβ β= +  where β  (0 1)β≤ ≤  denotes the 
harvest rate. Finally, suppose that µ  (0 1)µ≤ ≤  is the incidence rate: this represents 
the proportion of individuals in the population showing symptoms of a disease. 

Next, the dynamics of susceptible and infected individuals can be described by 
the following differential equations (see also Fig. 1). 
 

( ) ( ) ,dS b N N d N S SI S
dt

α β= − − −   (1) 

 

( ) .dI SI d N I I I
dt

α µ β= − − −   (2) 

 
By summing up these differential equations, we obtain the following equation, 

which describes the dynamics of the entire population. 
 

( ) ( ) 1 ,dN Nb N N d N N I N r N I N
dt K

µ β µ β = − − − = − − −  
  (3) 

 

where 1 1r b d= −  (0 )r<  and 
2 2

rK
b d

=
+

 (0 ),K<  which refer to the intrinsic 

growth rate and the carrying capacity, respectively. 
 

  
Fig. 1. Flow diagram of disease transmission dynamics in a population using a susceptible (S)�
Infected (I) disease spread model. 
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Steady  state  condition 
 
In this analysis, we are interested in the steady state or sustainable situation. 
Therefore, in what follows we examine the steady state conditions for these cases: 
with hunting and without hunting, and with disease and without disease. Firstly, 
we build a full model where both hunting and disease are included. 

In the steady state, there is no increment in the population size since ,I  ,S  
and N  take the same value over time. In other words, 0,dN dt =  0,dS dt =  and 

0.dI dt =  From the first two conditions, we obtain the following equations. 
 

,I
µ
Ψ

=   (4) 

 
( ) ,b N NS

Iα
=
Ω +

  (5) 

 

where 1 Nr N N
K

β Ψ = − −  
 and ( ) .d N βΩ = +  From the last condition 

0,dI dt =  because 0,I ≠  it follows that 
 

.S µ
α

Ω +
=   (6) 

 
From eqs (4) to (6), we obtain the following equation. 

 

2 [ ( ) ] 0.b N Nαµ α
µ

 Ψ
Ω + + Ω + Ψ − = 

 
  (7) 

 
Population size ,N  which satisfies Eq. (7), is the steady state population size, 

hereafter denoted as *.N  Since Eq. (7) is the third-degree equation of ,N  *N  
can be searched numerically using the Solver function in Microsoft Excel. When 

*N  is detected numerically, *S  and *I  can be calculated using eqs (6) and (4), 
respectively. 

Next, we examine the case where this ungulate population is completely free 
from disease. In this case, α  is set to zero, and Eq. (3) is reduced to 
 

1 .dS dN Nr N N
dt dt K

β = = − −  
  (8) 

 
In the steady state, we obtain the following condition. 
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[ ]* .K rN
r
β−

=   (9) 

 
Equation (9) implies that if the intrinsic growth rate is higher than the harvest 

rate, *N  takes a positive value, and if otherwise, * 0.N =  
 

Parameter  setting  and  numerical  simulation  procedure 
 
As a base case, we set the parameter values as follows: 1 5,b =  2 0.002,b =  

1 4.9,d =  2 0.002,d =  0.8,α =  0.05,β =  and 0.08.µ =  Then, it follows that 
0.1r =  and 25K =  (Table 1). These parameter values are similar to those for the 

Hokkaido sika deer Cervus nippon yesoensis in Kawata (2006), where r  and K  
are set at 0.15/year and 25/km2, respectively. Since our model employs numerical 
simulation, we also conduct a sensitivity analysis to confirm the robustness of our 
results and determine the qualitative change. 

We calculate the steady state population sizes *S  and *I  using the Solver 
function in Microsoft Excel. Firstly, we search for *N  that satisfies Eq. (7), and 
then calculate *S  and *I  using eqs (6) and (4), respectively. The following 
constraints should be satisfied: * 0,S ≥  * 0,I ≥  and * * *.S I N+ =  Basically, if at 
least one of these constraints is not satisfied, the initial value of N  is changed. 
This is because of the possibility that we obtained a local non-steady solution, 
although there also exists a steady state solution. However, because we calculate 
steady state solutions numerically, some margin of error may be observed 
between *,N  which is calculated with Eq. (7), and the sum of * *,S I+  which are 
calculated with eqs (6) and (4). In such a case, we adopt the latter value. 
 

 
Table 1. Parameter settings for the base case and cases with 
changed parameters 

 
 Base Case 1 Case 2 Case 3 

   Changed parameters 
  α, β µ, α, β r, α, β 
r   0.1   0.2 
K   25    
 1b  5    
 2b  0.002   0.004 
 1d  4.9   4.8 
 2d  0.002   0.004 
α   0.8 0�0.9 0�0.9 0�0.9 
β   0.05 0�0.1 0�0.1 0�0.1 
µ   0.08 0.04  

�������� 
Note 1: β  is set such that .rβ ≤  Otherwise, *N  is less than 0, 
as is easily derived from Eq. (9). Note 2: The blank columns 
denote that the values are the same as those in the base case. 
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RESULTS 
 

When the parameter values are set according to the base case, the steady state 
population sizes *,S  *,I  and *N  are 6.31, 1.78, and 8.09, respectively. In 
Fig. 2, we present the steady state population sizes where the values of the 
transmission rate α  are set 0.8 and 0.4, and the harvest rate β  is changed from 0 
to 0.1. Moreover, in Fig. 2, * ( 0)N α =  is the case where all individuals in the 
population are free from infection. As β  increases, the steady state population 
size N  diminishes, and N  becomes zero when ,rβ =  as is suggested by Eq. (9). 

When 0.4,α =  * ( 0.4),S α =  * ( 0.4),I α =  and * ( 0.4)N α =  are the steady 
state population sizes of *,S  *,I  and *,N  respectively. As β  increases, 

* ( 0.4)I α =  decreases but * ( 0.4)S α =  is almost stable (decreases only slightly), 
and therefore, * ( 0.4)N α =  decreases. When 0.0497,β =  it follows that 

* ( 0.4) 0I α = =  and * ( 0.4) * ( 0).N Nα α= = =  This means that the population 
size of * ( 0.4)I α =  becomes zero and * ( 0.4)N α =  coincides with * ( 0)N α =  
when 0.0497.β =  For 0.0497,β >  the line of * ( 0.4)N α =  coincides with that of 

* ( 0).N α =  These results remain the same for the case when 0.8.α =  As is 
easily seen from Fig. 2, as α  increases, *N  decreases, but as β  increases, the 
difference between * ( 0)N α =  and others such as * ( 0.4)N α =  diminishes. 

Next, we show two cases where (1) the incidence rate µ  is halved ( 0.04)µ =  
and (2) the intrinsic growth rate r  is doubled ( 0.2).r =  Figure 3 presents the 
results obtained when µ  is halved. As compared with the base case, the steady 
state population sizes *N  and *I  increase, whereas *S  is almost stable 
(decreases only slightly) provided * 0.I >  Further, when * 0,I =  *S  and *N  
coincide with the values of the case where 0.α =  

 
 

  
Fig. 2. Harvest rate and steady state population size ( 0.1,r =  25,K =  0.08).µ =  
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Fig. 3. Harvest rate and steady state population size ( 0.1,r =  25,K =  0.04).µ =  Note: The grey 
lines are * ( 0.4),N α =  * ( 0.8),N α =  * ( 0.4),I α =  and * ( 0.8)I α =  from Fig. 2. Since the 
trajectory of * ( 0)N α =  is the same, and * ( 0.4)S α =  and * ( 0.8)S α =  are almost the same for 
the cases where 0.08µ =  and 0.04, they are not depicted with the grey lines in this figure. 

 
 
The results shown in Fig. 4 pertain to the case where r  is doubled. As 

compared with the base case, the steady state population sizes *N  and *I   
 

 

  
Fig. 4. Harvest rate and steady state population size ( 0.2,r =  25,K =  0.08).µ =  Note: The grey 
lines are * ( 0),N α =  * ( 0.4),N α =  * ( 0.4),S α =  and * ( 0.4)I α =  from Fig. 2. 
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increase, whereas *S  is almost stable (decreases only slightly). Moreover, 
because r  is doubled, the value of β  when * ( 0) 0N α = =  is also doubled, and 
the slope of * ( 0)N α =  becomes gradual. 

 
 

DISCUSSION 
 

Firstly, we explain the meaning of steady state in greater detail. Let 
* 10S = head/km2, * 4I = head/km2, and 0.05.β =  Then, the sustainable total 

harvest is * 0.05 (10 4)H = × + head/km2 = 0.7 head/km2, while those of susceptible 
and infected individuals are 0.5 and 0.2 head/km2, respectively. Therefore, as 
long as 0.5 and 0.2 head/km2 are hunted every year, * 10S = head/km2 and 

* 4I = head/km2 are maintained in the subsequent years. This scenario is referred 
to as the steady state. 

Now, we examine the implication of our results. For some value of ,β  we 
have the following prediction (called prediction I). Once we reach some steady 
state, we may maintain *S  and *I  provided we randomly hunt ungulates. This 
is because β  is the same for S  and .I  In some cases, there is a possibility that 
the population size may deviate from *S  and *,I  but this can be easily modified. 

We also have the following prediction (called prediction II). As Fig. 2 suggests, 
the steady state population size of *S  is almost stable (increases only slightly) as 
the hunting rate β  increases. Therefore, as long as we neglect the disposal and 
hunting costs of infected individuals, the choice between a large and a small value 
of β  is almost a matter of indifference to hunters. 

Next, we examine the case where the value of β  is increased from one year to 
the next. If random hunting is continued under this situation, *S  and *I  in one 
year are not satisfied, and S ′  and I ′  are attained in the following year, where 

*S S′ <  and *.I I′ >  Therefore, it is necessary to adjust S ′  and I ′  according to 
the new levels of *S  and *I  under the new value of .β  We refer to the above as 
prediction III. 

Let us now introduce the disposal and hunting costs of infected individuals. 
As the value of β  increases, the hunting cost may increase drastically because it 
is quite difficult to catch the remaining few individuals. On the other hand, the 
disposal cost decreases because the amount of hunting decreases (prediction IV). 
Figure 5 depicts these hunting costs, including the sum of the costs (denoted as total 
cost) and the total revenue, which is generated from the hunting of susceptible 
individuals. The optimum β  is obtained at the point where dTR d dTC dβ β=   
or MR = MC. In other words, hunters select β  such that TR( )β  � TC( )β  is 
maximized. 

Finally, we examine the two questions posed in this paper. First, we deal with 
Question 1. From prediction III, we can state that it is reasonable for hunters to 
continue hunting at the rate *.β  In addition, from prediction I, we can gather that 
it is relatively easy to maintain an optimum population level. Therefore, *S  and 

*I  are maintained such that they correspond to this *,β  and the spread of the 
disease is prevented. We now proceed to Question 2. The targeted removal of 
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Fig. 5. Determination of the optimum harvest rate. 

 
 

infected individuals by human hunters is not realistic. While increasing the  
value of ,β  infected individuals must be hunted selectively or intentionally, as 
prediction III suggests. However, as prediction IV suggests, hunting costs may 
drastically increase as the value of β  increases. Moreover, at * 0 ,Iβ =  it may often 
be the case that TR < TC is maintained. In other words, only when TR is greater 
than TC at * 0Iβ =  will all of the infected individuals be removed. 

As the above discussions are based on theoretical parameter values, we 
performed a sensibility analysis. In what follows, we examine the results of the 
sensibility analysis. As Fig. 2 suggests, when the transmission rate α  increases, the 
steady state population size decreases. Figure 3 suggests that as the incidence rate 
µ  decreases, the steady state population size increases. Figure 4 suggests that as 
the intrinsic growth rate r  increases, the steady state population size increases. 
These are consistent with intuition. Furthermore, as these figures suggest, the 
shape of *S  and *I  are retained, which implies that the above discussion and 
conclusions remain valid when the parameter values are changed. 

 
 

CONCLUSIONS 
 

It is pointed out that large carnivores, particularly wolves, attack weak prey, i.e. 
the sick, the infirm, the physically handicapped, and/or juveniles. However, given 
the extensive hunting of large carnivores and the lack of attention paid to these 
beneficial aspects, the current population sizes of large carnivores have 
diminished considerably in many areas. Moreover, in some regions they have 
become extinct. Although the reintroduction of large carnivores is occasionally 
considered and executed, it is not always feasible. Our study suggests that  
to some extent, human hunting can act as a substitute for predation by large 
carnivores. 

However, the replacement of large carnivores by human hunters for the 
purpose of predation has some limitations. Although human hunters can prevent 
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the spread of disease, they may be unable to remove infected individuals completely 
because of cost issues, based on our results presented above. In addition, Choisy 
& Rohani (2006) suggest that harvesting may increase the severity of the wildlife 
disease epidemic. On the other hand, typically, large carnivores selectively hunt 
such infected individuals. At best, human hunters can approximate the role played 
by large carnivores. Therefore, greater attention should be paid to the ecological 
role and beneficial aspects of large carnivores. 

In this paper, several issues remain to be resolved. To name a few, our results 
should be compared with the situations where large carnivores do exist. For  
a comparison between hunting by humans and predation by large carnivores,  
a modified model is required, and we leave this examination for future research. 
In addition, we had set the parameter values artificially, based on a former study. 
Accumulation of more empirical data is essential for confirming and enhancing 
the accuracy of our conclusion. 
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Kas  jahimehed  suudavad  suurkiskjaid  asendada? 
Sõraliste  populatsiooni haigusel põhinev uuring 

 
Yukichika Kawata 

 
On oletatud, et suurkiskjate, näiteks hundi saagiks langevad sõraliste populat-
siooni nõrgemad isendid, mille tulemusena paraneb populatsiooni tervislik sei-
sund. Siiski pole see hüpotees piisavalt kontrollitud. Artikli eesmärgiks on uurida, 
kas inimeste peetav jaht parandab sõraliste populatsiooni tervislikku seisundit. 
Selleks on keskendutud haigusele ja koostatud tundlikkuse-haigestumise-paranemise 
mudel, mille abil on näidatud, et kuigi jahipidamine takistab haiguse levikut, ei 
aita see haigeid isendeid populatsioonist eraldada. 

 
 
 


