ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Restoration of eelgrass (Zostera marina) in Estonian coastal waters, Baltic Sea; pp. 41–54
PDF | https://doi.org/10.3176/proc.2023.1.05

Authors
Liina Pajusalu, Christoffer Boström, Karine Gagnon, Kaire Kaljurand, Jonne Kotta, Teemar Püss, Georg Martin
Abstract

Seagrass meadows are facing structural degradation worldwide, losing both area and biodiversity. Habitat restoration could reverse this degradation, but so far, the success rate of seagrass restoration has been low. Incorporating facilitative interactions between plants and mussels into habitat restoration projects could potentially improve restoration success by increasing eelgrass survival and growth. In this study, we tested whether co-restoring two ecosystem engineers, namely eelgrass Zostera marina and blue mussels Mytilus edulis/trossulus would increase eelgrass restoration success in different sites. We also tested the rope method of eelgrass transplantation in sites where eelgrass was known to have previously existed. These small-scale field experiments were conducted in 2017–2019, in the northeastern Baltic Sea where the eelgrass reproduces only vegetatively. We found that co-restoration of eelgrass and mussels did not work at small scales because mussels were washed away within the first growing season. However, the shoot density of eelgrass increased over time, especially over the second growing season in the sheltered site, indicating that restoration is possible in these areas. Similarly, the restoration was most successful with the rope method in the sheltered site, suggesting that this method also has potential at larger spatial scales. Our results suggest that in such dynamic ecosystems abiotic factors, particularly exposure, play a larger role compared to biotic interactions, and thus the success of habitat restoration largely depends on local environmental conditions.

References

Airoldi, L., Bacchiocchi, F., Cagliola, C., Bulleri, F. and Abbiati, M. 2005. Impact of recreational harvesting on assemblages in artificial rocky habitats. Mar. Ecol. Prog. Ser., 299, 55–66.
https://doi.org/10.3354/meps299055

Almqvist, G., Strandmark, A. K. and Appelberg M. 2010. Has the invasive round goby caused new links in Baltic food webs? Environ. Biol. Fishes89, 79–93.
https://doi.org/10.1007/s10641-010-9692-z

Arias-Ortiz, A., Serrano, O., Masqué, P., Lavery, P. S., Mueller, U., Kendrick, G. A. et al. 2018. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change8, 338–344.
https://doi.org/10.1038/s41558-018-0096-y

Bates, D., Maechler, M., Bolker, B. and Walker, S. 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw., 67, 1–48.
https://doi.org/10.18637/jss.v067.i01

Berglund, J., Mattila, J., Rönnberg, O., Heikkilä, J. and Bonsdorff, E. 2003. Seasonal and inter-annual variation in occurrence and biomass of rooted macrophytes and drift algae in shallow bays. Estuar. Coast. Shelf Sci., 56(5), 1167–1175.
https://doi.org/10.1016/S0272-7714(02)00326-8

Bos, A. R. and van Katwijk M. M. 2007. Planting density, hydrodynamic exposure and mussel beds affect survival of transplanted intertidal eelgrass. Mar. Ecol. Prog. Ser., 336, 121–129.
https://doi.org/10.3354/meps336121

Boström, C., Baden, S., Bockelmann, A. C., Dromph, K., Fredriksen, S., Gustafsson, C. et al. 2014. Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation. Aquat. Conserv., 24, 410–434.
https://doi.org/10.1002/aqc.2424

Boudouresque, C. F., Bernard, G., Pergent, G., Shili, A. and Verlaque, M. 2009. Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot. Mar., 52(5), 395–418.
https://doi.org/10.1515/BOT.2009.057

Bracken, M. E. and Nielsen, K. J. 2004. Diversity of intertidal macroalgae increases with nitrogen loading by invertebrates. Ecology85(10), 2828–2836.
https://doi.org/10.1890/03-0651

Crawford, C. M., Macleod, C. K. and Mitchell, I. M. 2003. Effects of shellfish farming on the benthic environment. Aquaculture224, 117–140.
https://doi.org/10.1016/S0044-8486(03)00210-2

Davenport, J. and Chen, X. 1987. A comparison of methods for the assessment of condition in the mussel (Mytilus edulis L.). J. Molluscan Stud.53(3), 293–297.
https://doi.org/10.1093/mollus/53.3.293

de los Santos, C. B., Krause-Jensen, D., Alcoverro, T., Marbà, N., Duarte, C. M., van Katwijk, M. M. et al. 2019. Recent trend reversal for declining European seagrass meadows. Nat. Commun.10(1), 3356.
https://doi.org/10.1038/s41467-019-11340-4

Duarte, B., Martins, I., Rosa, R., Matos, A. R., Roleda, M. Y., Reusch, T. B. et al. 2018. Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptation potential. Front. Mar. Sci.5, 190.
https://doi.org/10.3389/fmars.2018.00190

Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. and Marbà, N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang.3, 961–968.
https://doi.org/10.1038/nclimate1970

Dunic, J. C., Brown, C. J., Connolly, R. M., Turschwell, M. P. and Côté I. M. 2021. Long-term declines and recovery of meadow area across the world’s seagrass bioregions. Glob. Chang. Biol., 27(17), 4096–4109.
https://doi.org/10.1111/gcb.15684

Feistel, R., Nausch, G. and Wasmund, N. (eds). 2008. State and Evolution of the Baltic Sea, 19522005: A Detailed 50-year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment. John Wiley & Sons, Inc. 
https://doi.org/10.1002/9780470283134

Fonseca, M. S. and Kenworthy, W. J. 1987. Effects of current on photosynthesis and distribution of seagrasses. Aquat. Bot.27(1), 59–78.
https://doi.org/10.1016/0304-3770(87)90086-6

Fonseca, M. S., Kenworthy, W. J. and Thayer, G. W. 1998. Guidelines for the Conservation and Restoration of Seagrasses in the United States and Adjacent Waters. National Oceanic and Atmospheric Administration (NOAA) Coastal Ocean Office, NOAA Coastal Ocean Program Decision Analysis Series, No. 12. Silver Spring, MD.

Gagnon, K., Christie, H., Didderen, K., Fagerli, C. W., Govers, L. L., Gräfnings, M. et al. 2021. Incorporating facilitative interactions into small-scale eelgrass restoration—challenges and opportunities. Restor. Ecol., 29(5), 1–11. 
https://doi.org/10.1111/rec.13398

Gagnon, K., Rinde, E., Bengil, E. G., Carugati, L., Christianen, M. J., Danovaro, R. et al. 2020. Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success. J. Appl. Ecol., 57(6), 1161–1179.
https://doi.org/10.1111/1365-2664.13605

Gera, A., Pagès, J. F., Arthur, R., Farina, S., Roca, G., Romero, J. et al. 2014. The effect of a centenary storm on the long-lived seagrass Posidonia oceanicaLimnol. Oceanogr., 59(6), 1910–1918.
https://doi.org/10.4319/lo.2014.59.6.1910

Gustafsson, C. and Boström, C. 2014. Algal mats reduce eelgrass (Zostera marina L.) growth in mixed and monospecific meadows. J. Exp. Mar. Biol. Ecol., 461, 85–92.
https://doi.org/10.1016/j.jembe.2014.07.020

Hyman, A. C., Frazer, T. K., Jacoby, C. A., Frost, J. R. and Kowalewski, M. 2019. Long-term persistence of structured habitats: seagrass meadows as enduring hotspots of bio­diversity and faunal stability. Proc. Royal Soc. B., 286, 20191861.
https://doi.org/10.1098/rspb.2019.1861

Isæus, M. and Rygg, B. 2005. Wave Exposure Calculations for the Finnish Coast. Norwegian Institute for Water Research (NIVA), Oslo.

Isæus, M., Malm, T., Persson, S. and Svensson, A. 2004. Effects of filamentous algae and sediment on recruitment and survival of Fucus serratus (Phaeophyceae) juveniles in the eutrophic Baltic Sea. Eur. J. Phycol., 39(3), 301–307.
https://doi.org/10.1080/09670260410001714732

Jones, H. P., Jones, P. C., Barbier, E. B., Blackburn, R. C., Rey Benayas, J. M., Holl, K. D. et al. 2018. Restoration and repair of Earth’s damaged ecosystems. Proc. Royal Soc. B., 285, 20172577.
https://doi.org/10.1098/rspb.2017.2577

Koch, M., Bowes, G., Ross, C. and Zhang, X. H. 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol., 19(1), 103–132.
https://doi.org/10.1111/j.1365-2486.2012.02791.x

Kotta, J., Herkül, K., Kotta, I., Orav-Kotta, H. and Lauringson, V. 2009. Effects of the suspension feeding mussel Mytilus trossulus on a brackish water macroalgal and associated invertebrate community. Mar. Ecol., 30(s1), 56–64.
https://doi.org/10.1111/j.1439-0485.2009.00303.x

Kotta, J., Oganjan, K., Lauringson, V., Pärnoja, M., Kaasik, A., Rohtla, L. et al. 2015. Establishing functional relationships between abiotic environment, macrophyte coverage, resource gradients and the distribution of Mytilus trossulus in a brackish non-tidal environment. PLOS ONE10(8), e0136949.
https://doi.org/10.1371/journal.pone.0136949

Kotta, J., Wernberg, T., Jänes, H., Kotta, I., Nurkse, K., Pärnoja, M. et al. 2018. Novel crab predator causes marine ecosystem regime shift. Sci Rep., 8, 1–7.
https://doi.org/10.1038/s41598-018-23282-w

Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. 2017. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw., 82(13), 1–26.
https://doi.org/10.18637/jss.v082.i13

Larkum, A., Orth, R. J. and Duarte, C. M. (eds). 2006. Seagrasses: Biology, Ecology and Conservation. Springer Dordrecht, The Netherlands.

Lauringson, V. and Kotta, J. 2016. Mussels of a marginal population affect the patterns of ambient macrofauna: a case study from the Baltic Sea. Mar. Environ. Res., 116, 10–17.
https://doi.org/10.1016/j.marenvres.2016.02.010

Lehvo, A. and Bäck, S. 2001. Survey of macroalgal mats in the Gulf of Finland, Baltic Sea. Aquat. Conserv., 11(1), 11–18.
https://doi.org/10.1002/aqc.428

Lenth, V. R., Buerkner, P., Herve, M., Love, J., Riebl, H. and Singmann, H. 2020. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.1. 
https://CRAN.R-project.org/package=emmeans

Lyons, D. A., Arvanitidis, C., Blight, A. J., Chatzinikolaou, E., Guy-Haim, T., Kotta, J. et al. 2014. Macroalgal blooms alter community structure and primary productivity in marine ecosystems. Glob. Change Biol., 20(9), 2712–2724.
https://doi.org/10.1111/gcb.12644

Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W. and Westlake, D. F. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia444, 71–84.
https://doi.org/10.1023/A:1017520800568

Marion, S. R. and Orth, R. J. 2010. Innovative techniques for large-scale seagrass restoration using Zostera marina (eelgrass) seeds. Restor. Ecol., 18(4), 514–526.
https://doi.org/10.1111/j.1526-100X.2010.00692.x

Matheson, F., Reed, J., Dos Santos, V., Mackay, G. and Cummings, V. 2017. Seagrass rehabilitation: successful transplants and evaluation of methods at different spatial scales. N. ZJ. MarFreshwRes.51(1), 96–109.
https://doi.org/10.1080/00288330.2016.1265993

Mazarrasa, I., Marbà, N., Serrano, O., Lovelock, C., Lavery, P. S., Fourqurean, J. W. et al. 2015. Seagrass meadows as a globally significant carbonate reservoir. Biogeoscienes12(16), 4993–5003.
https://doi.org/10.5194/bg-12-4993-2015

McGlathery, K. J., Sundbäck, K. and Anderson, I. C. 2007. Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar. Ecol. Prog. Ser., 348, 1–18.
https://doi.org/10.3354/meps07132

Moksnes, P-O., Eriander, L., Infantes, E. and Holmer, M. 2018. Local regime shifts prevent natural recovery and restoration of lost eelgrass beds along the Swedish west coast. Estuaries Coast., 41, 1712–1731.
https://doi.org/10.1007/s12237-018-0382-y

Möller, T. 2017. Mapping and modelling of the spatial distribution of benthic macrovegetation in the NE Baltic Sea with a special focus on the eelgrass Zostera marina Linnaeus, 1753. PhD thesis. Dissertationes Biologicae Universitatis Tartuensis, 319. University of Tartu, Estonia.

Moore, K. A. and Short, F. T. 2006. Zostera: biology, ecology, and management. In Seagrasses: Biology, Ecology and Conservation (Larkum, A. W. D., Orth, R. J. and Daurte, C. M., eds). Springer, The Netherlands, 361–386.
https://doi.org/10.1007/1-4020-2983-7_16

Newell, R. I. and Koch, E. W. 2004. Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries27(5), 793–806.
https://doi.org/10.1007/BF02912041

Nikolopoulos, A. and Isæus, M. 2008. Wave Exposure Calculations for the Estonian Coast. AquaBiota Water Research, Stockholm.

Norkko, A. and Bonsdorff, E. 1996. Population responses of coastal zoobenthos to stress induced by drifting algal mats. Mar. Ecol. Prog. Ser., 140, 141–151.
https://doi.org/10.3354/meps140141

Ondiviela, B., Losada, I. J., Lara, J. L., Maza, M., Galván, C., Bouma, T. J. et al. 2014. The role of seagrasses in coastal protection in a changing climate. Coast. Eng., 87, 158–168.
https://doi.org/10.1016/j.coastaleng.2013.11.005

Paalme, T., Martin, G., Kotta, J., Kukk, H., and Kaljurand, K. 2004. Distribution and dynamics of drifting macroalgal mats in Estonian coastal waters during 1995–2003. Proc. Estonian Acad. Sci. Biol. Ecol., 53(4), 260–268.
https://doi.org/10.3176/biol.ecol.2004.4.04

Paalme, T., Torn, K., Martin, G., Kotta, I. and Suursaar, Ü. 2020. Littoral benthic communities under effect of heat wave and upwelling events in the NE Baltic Sea. J. Coast. Res., 95(sp1), 133–137.
https://doi.org/10.2112/SI95-026.1

Paulo, D., Cunha, A. H., Boavida, J., Serrão, E. A., Gonçalves, E. J. and Fonseca, M. 2019. Open coast seagrass restoration. Can we do it? Large scale seagrass transplants. Front. Mar. Sci., 6, 52.
https://doi.org/10.3389/fmars.2019.00052

Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S. et al. 2012. Estimating global “blue carbon” emissions from conversion and degrada­tion of vegetated coastal ecosystems. PLOS ONE7(9), e43542.
https://doi.org/10.1371/journal.pone.0043542

Reeves, S. E., Renzi, J. J., Fobert, E. K., Silliman, B. R., Hancock, B. and Gillies C. L. 2020. Facilitating better outcomes: How positive species interactions can improve oyster reef restoration. Front. Mar. Sci.7, 656.
https://doi.org/10.3389/fmars.2020.00656

Reusch, T. B., Chapman, A. R. and Gröger, J. P. 1994. Blue mussels Mytilus edulis do not interfere with eelgrass Zostera marina but fertilize shoot growth through biodeposition. Mar. Eco. Prog. Ser.108, 265–282.
https://doi.org/10.3354/meps108265

Short, F. T. and Duarte, C. M. 2001. Methods for the measurement of seagrass growth and production. In Global Seagrass Research Methods (Short, F. T. and Coles, R. G., eds). Elsevier, Amsterdam, 155–182.
https://doi.org/10.1016/B978-044450891-1/50009-8

Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira, S., Bujang, J. S. et al. 2011. Extinction risk assessment of the world’s seagrass species. Biol. Conserv., 144(7), 1961–1971.
https://doi.org/10.1016/j.biocon.2011.04.010

Silliman, B. R., Schrack, E., He, Q., Cope, R., Santoni, A., Van Der Heide, T. et al. 2015. Facilitation shifts paradigms and can amplify coastal restoration efforts. ProcNat. Acad. Sci. U.S.A.112(46), 14295–14300.
https://doi.org/10.1073/pnas.1515297112

Suykerbuyk, W., Bouma, T. J., Govers, L. L., Giesen, K., de Jong, D. J., Herman, P. et al. 2016. Surviving in changing seascapes: sediment dynamics as bottleneck for long-term seagrass presence. Ecosystems19, 296–310.
https://doi.org/10.1007/s10021-015-9932-3

Unsworth, R. K., Nordlund, L. M. and Cullen-Unsworth, L. C. 2019. Seagrass meadows support global fisheries pro­duction. Conserv. Lett.12, e12566.
https://doi.org/10.1111/conl.12566

Valdez, S. R., Zhang, Y. S., van der Heide, T., Vanderklift, M. A., Tarquinio, F., Orth, R. J. et al. 2020. Positive ecological interactions and the success of seagrass restoration. Front. Mar. Sci.7, 91.
https://doi.org/10.3389/fmars.2020.00091

Valentine, J. F. and Heck, K. L. 1993. Mussels in seagrass meadows: their influence on macroinvertebrate abundance and secondary production in the northern Gulf of Mexico. Mar. Eco. Prog. Ser.96, 63–74.
https://doi.org/10.3354/meps096063

van Katwijk, M., Bos, A., De Jonge, V., Hanssen, L., Hermus, D. and De Jong, D. 2009. Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Mar. Pollut. Bull., 58, 179–188.
https://doi.org/10.1016/j.marpolbul.2008.09.028

van Katwijk, M. M., Thorhaug, A., Marbà, N., Orth, R. J., Duarte, C. M., Kendrick, G. A. et al. 2016. Global analysis of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol., 53, 567–578.
https://doi.org/10.1111/1365-2664.12562

Wall, C. C., Peterson, B. J. and Gobler, C. J. 2008. Facilitation of seagrass Zostera marina productivity by suspension-feeding bivalves. Mar. Eco. Prog. Ser., 357, 165–174.
https://doi.org/10.3354/meps07289

Waycott, M., Duarte, C. M., Carruthers, T. J., Orth, R. J., Dennison, W. C., Olyarnik, S., et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Nat. Acad. Sci. U.S.A.106(30), 12377–12381.
https://doi.org/10.1073/pnas.0905620106

Wenne, R., Zbawicka, M., Bach, L., Strelkov, P., Gantsevich, M., Kukliński, P. et al. 2020. Trans-atlantic distribution and introgression as inferred from single nucleotide polymor­phism: Mussels Mytilus and environmental factors. Genes11(5), 530.
https://doi.org/10.3390/genes11050530

Worm, B. and Reusch, T. B. H. 2000. Do nutrient availability and plant density limit seagrass colonization in the Baltic Sea? Mar. Ecol. Prog. Ser., 200, 159–166.
https://doi.org/10.3354/meps200159

Back to Issue