ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Classifying cubic symmetric graphs of order 52p2; pp. 55–60
PDF | https://doi.org/10.3176/proc.2023.1.06

Authors
Shangjing Hao, Shixun Lin
Abstract

An automorphism group of a graph is said to be s-regular if it acts regularly on the set of s-arcs in the graph. A graph is s-regular if its full automorphism group is s-regular. In this paper, we classify all connected cubic symmetric graphs of order 52p2 for each prime p.

References

1. Alaeiyan, M. and Hosseinipoor M. K. A classification of the cubic s-regular graphs of orders 12and 12p2Acta Univ. Apulensis Math. Inform., 2011, 25, 153–158. 

2. Cheng, Y. and Oxley, J. On weakly symmetric graphs of order twice a prime. J. Combin. Theory Ser. B, 1987, 42(2), 196–211. 3. Conder, M. Trivalent (Cubic) Symmetric Graphs on up to 10000 Vertices. 2011. 
https://www.math.auckland.ac.nz/~conder/symmcubic10000list.txt
https://doi.org/10.1016/0095-8956(87)90040-2

4. Conway, J. H., Curties, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A. Atlas of Finite Groups. Clarendon Press, Oxford, 1985.

5. Feng, Y. Q., Ghasemi, M. and Yang, D. W. Cubic symmetric graphs of order 8p3Discrete Math., 2014, 318, 62–70.
https://doi.org/10.1016/j.disc.2013.11.013

6. Feng, Y. Q. and Kwak, J. H. One-regular cubic graphs of order a small number times a prime or a prime square. J. Aust. Math. Soc., 2004, 76(3), 345–356.
https://doi.org/10.1017/S1446788700009903

7. Feng, Y. Q. and Kwak, J. H. Classifying cubic symmetric graphs of order 10or 10p2Sci. China Ser. A, 2006, 49(3), 300–319. 
https://doi.org/10.1007/s11425-006-0300-9

8. Feng, Y. Q. and Kwak, J. H. Cubic symmetric graphs of order twice an odd prime-power. J. Aust. Math. Soc., 2006, 81(2), 153–164.
https://doi.org/10.1017/S1446788700015792

9. Feng, Y. Q. and Kwak, J. H. Cubic symmetric graphs of order a small number times a prime or a prime square. J. Combin. Theory Ser. B, 2007, 97(4), 627–646.
https://doi.org/10.1016/j.jctb.2006.11.001

10. Feng, Y. Q., Kwak, J. H. and Wang, K. Classifying cubic symmetric graphs of order 8or 8p2European J. Combin., 2005, 26(7), 1033–1052.
https://doi.org/10.1016/j.ejc.2004.06.015

11. Feng, Y. Q., Kwak, J. H. and Xu, M. Y. Cubic s-regular graphs of order 2p3J. Graph Theory, 2006, 52(4), 341–352.
https://doi.org/10.1002/jgt.20169

12. Gorenstein, D., Lyons, R. and Solomon, R. The Classification of the Finite Simple Groups. Mathematical Surveys and Monographs, Vol. 40, American Mathematical Society, Providence, RI, 1994.
https://doi.org/10.1090/surv/040.1

13. Kelarev, A. V. Graph Algebras and Automata. Marcel Dekker, New York, 2003.
https://doi.org/10.1201/9781482276367

14. Lorimer, P. Vertex-transitive graphs: Symmetric graphs of prime valency. J. Graph Theory, 1984, 8(1), 55–68.
https://doi.org/10.1002/jgt.3190080107

15. Oh, J. M. Cubic s-regular graphs of order 12p, 36p, 44p, 52p, 66p, 68and 76pJ. Appl. Math. Inform., 2013, 31(5–6), 651–659.
https://doi.org/10.14317/jami.2013.651

16. Rotman, J. J. An Introduction to the Theory of Groups. Springer, New York, 1995.
https://doi.org/10.1007/978-1-4612-4176-8

17. Talebi, A. A. and Mehdipoor, N. Classifying cubic s-regular graphs of orders 22and 22p2Algebra Discrete Math., 2013, 16(2), 293–298.

18. Tutte, W. T. A family of cubical graphs. Proc. Cambridge Philos. Soc., 1947, 43, 459–474.
https://doi.org/10.1017/S0305004100023720

19. Tutte, W. T. On the symmetry of cubic graphs. Canadian J. Math., 1959, 11, 621–624.
https://doi.org/10.4153/CJM-1959-057-2

20. Zhang, M. Software defined network energy efficient algorithm based on degree sequence of nodes. Microelectr. Comp., 2021, 38(10), 65–72.

21. Zhou, J. X. and Feng, Y. Q. Cubic vertex-transitive graphs of order 2pqJ. Graph Theory, 2010, 65(4), 285–302. 
https://doi.org/10.1002/jgt.20481

 

Back to Issue