ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Effective attenuation coefficient and penetration depth of 630 nm laser light in polyvinyl alcohol slime glue phantoms simulating the human brain tumour; pp. 221–226
PDF | 10.3176/proc.2022.3.03

Authors
Lindokuhle Ntombela, Naven Chetty ORCID Icon, Bamise Adeleye ORCID Icon
Abstract

The effectiveness of optical methods such as photodynamic therapy (PDT) depends on the amount of light distribution within the tissue to aid their potential for early cancer detection in a quantitative and non-invasive manner. Knowledge of the effective attenuation coefficient and penetration depth for the laser light is crucial to ensuring that the tumour tissue receives adequate optical energy. This study investigated the effective attenuation coefficient and penetration depth of He–Ne 630 nm red laser light in polyvinyl alcohol slime glue phantoms simulating human brain tumour tissues. The effective attenuation coefficient (µeff) and penetration depth (δ) were deduced from the absorption coefficient (µa), scattering coefficient (µs), and anisotropy factor (g) obtained from the Henyey–Greenstein (H–G) function by collimated laser beam measurements. We found that the effective attenuation coefficient and penetration depth were 0.25 ± 0.02 mm−1 and 4.00 mm, respectively, in the simulated phantoms. These values were in reasonable agreement with values reported for malignant human brain tumour tissues in the literature. The constructed phantoms would be an excellent tool for the continued evaluation of PDT as an essential therapeutic procedure in cancer management.

 

References

1. Kayode, A. A. A., Shahzadi, A., Akram, M., Anwar, H., Kayode. O. T., Akinnawo, O. O. and Okoh, O. S. Brain tumor: An overview of the basic clinical manifestations and treatment. Glob. J. Cancer Ther., 2020, 6(1), 038–041.
https://dx.doi.org/10.17352/2581-5407.000034

2. Fass, L. Imaging and cancer: a review. Mol. Oncol., 2008, 2, 115–152.
https://doi.org/10.1016/j.molonc.2008.04.001

3. García-Figueiras, R., Baleato-González, S., Padhani, A. R., Luna-Alcalá, A., Vallejo-Casas, J. A., Sala, E. et al. How clinical imaging can assess cancer biology. Insights into Imaging, 2019, 10(1), 28.
https://doi.org/10.1186/s13244-019-0703-0

4. Bailey, D. L., Maisey, M. N., Townsend, D. W., Valk, P. E. and Maisey, M. N. Positron Emission Tomography. Springer, London, 2005.
https://doi.org/10.1007/b136169

5. Brenner, D. J. and Hall, E. J. Computed tomography – an increasing source of radiation exposure. N. Engl. J. Med., 2007, 357(22), 2277–2284.
https://doi.org/10.1056%2Fnejmra072149

6. Huettel, S. A., Song, A. W. and McCarthy, G. Functional Magnetic Resonance Imaging. Sinauer Associates, Sunderland, MA, 2004.

7. Gu, M. Advanced Optical Imaging Theory. Springer, Berlin, Heidelberg, 2000.
https://doi.org/10.1007/978-3-540-48471-4

8. Hou, L. C., Veeravagu, A., Hsu, A. R. and Tse, V. C. Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurg. Focus, 2006, 20(4), E5. 
https://doi.org/10.3171%2Ffoc.2006.20.4.2

9. Solomon, M., Liu, Y., Berezin, M. Y. and Achilefu, S. Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med. Princ. Pract., 2011, 20(5), 397–415.
https://doi.org/10.1159%2F000327655

10. Mehrmohammadi, M., Yoon, S. J., Yeager, D. and Emelianov, S. Y. Photoacoustic imaging for cancer detection and staging. Curr. Mol. Imaging, 2013, 2(1), 89–105.
https://doi.org/10.2174%2F2211555211302010010

11. Kato, H. and Ishida, T. Development of an agar phantom adaptable for simulation of various tissues in the range 5–40 MHz (Hyperthermia treatment of cancer). Phys. Med. Biol., 1987, 32(2), 221–226.
https://doi.org/10.1088%2F0031-9155%2F32%2F2%2F006

12. Hopkins, D. N. Determination of the linear attenuation coefficients and build-up factors of MCP-96 alloy for use in tissue compensation and radiation protection. MA thesis. Ball State University, IN, USA, 2010.

13. Mackle, E. C., Shapey, J., Maneas, E., Saeed, S. R.,  Bradford, R., Ourselin, S. et al. Patient-specific polyvinyl alcohol phantom fabrication with ultrasound and X-ray contrast for brain tumor surgery planning. J. Vis. Exp., 2020, 2020(161), e61344.
https://doi.org/10.3791%2F61344

14. Lamouche, G., Kennedy, B. F., Kennedy, K. M., Bisaillon, C. E., Curatolo, A., Campbell, G. et al. Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography. Biomed. Opt. Express, 2012, 3(6), 1381–1398.
https://doi.org/10.1364%2Fboe.3.001381

15. Hebden, J. C., Price, B. D., Gibson, A. P. and Royle, G. A soft deformable tissue-equivalent phantom for diffuse optical tomography. Phys. Med. Biol., 2006, 51(21), 5581–5590.
https://doi.org/10.1088%2F0031-9155%2F51%2F21%2F013

16. Guo, K., Zhu, Y., Wang, J., Jiang, C. and Yu, J. Characterizing the viscoelastic properties of a tissue-mimicking phantom for ultrasound elasticity imaging studies. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 490(2), 022035.
https://doi.org/10.1088%2F1757-899x%2F490%2F2%2F022035

17. Kosukegawa, H., Mamada, K., Kuroki, K., Liu, L., Inoue, K., Hayase, T. and Ohta, M. Measurements of dynamic vis­coelasticity of poly (vinyl alcohol) hydrogel for the development of blood vessel biomodeling. J. Fluid Sci. Technol., 2008, 3(4), 533–543.
https://doi.org/10.1299/jfst.3.533

18. Riedo, C., Caldera, F., Poli, T. and Chiantore, O. Poly(vinyl alcohol)-borate hydrogels with improved features for the cleaning of cultural heritage surfaces. Herit. Sci., 2015, 3(23).
https://doi.org/10.1186%2Fs40494-015-0053-2

19. Yusoff, A. N., Ding, A. Z., Azman, N., Awang, M. N. A. and Abdul Manan, H. Homogeneity and stability of poly (vinyl alcohol) slime phantom with different borax concentration. ECS J. Solid State Sci. Technol., 2019, 27(1&2), 51–67.

20. Arnfield, M. R., Tulip, J. and McPhee, M. S. Optical propa­gation in tissue with anisotropic scattering. IEEE Trans. Biomed. Eng., 1988, 35(5), 372–385.
https://doi.org/10.1109%2F10.1396

21. Zaccanti, G. and Bruscaglioni, P. Method of measuring the phase function of a turbid medium in the small scatter­ing angle range. Appl. Opt., 1989, 28(11), 2156–2164.
https://doi.org/10.1364%2Fao.28.002156

22. Pu, Y., Chen, J. and Wang, W. Investigation of scattering coefficients and anisotropy factors of human cancerous and normal prostate tissues using Mie theory. SPIE, 2014, 8941.
https://doi.org/10.1117%2F12.2034863

23. Wilson, B. C., Muller, P. J. and Yanch, J. C. Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours. Phys. Med. Biol., 1986, 31(2), 125–133.
https://doi.org/10.1088%2F0031-9155%2F31%2F2%2F002

24. Muller, P. J. and Wilson, B. C. An update on the penetration depth of 630 nm light in normal and malignant human brain tissue in vivo. Phys. Med. Biol., 1986, 31(11), 1295–1297.
https://doi.org/10.1088%2F0031-9155%2F31%2F11%2F012

25. Svaasand, L. O. and Ellingsen, R. Optical properties of human brain. Photochem. Photobiol., 1983, 38(3), 293–299.
https://doi.org/10.1111%2Fj.1751-1097.1983.tb02674.x

26. Mallidi, S., Anbil, S., Bulin, A. L., Obaid, G., Ichikawa, M.  and Hasan, T. Beyond the barriers of light penetration: strategies, perspectives and possibilities for photody­namic therapy. Theranostics, 2016, 6(13), 2458–2487.
https://doi.org/10.7150%2Fthno.16183

 

Back to Issue