ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Tailoring the microstructure and tribological properties in commercially pure aluminium processed by High Pressure Torsion Extrusion; pp. 540–548
PDF | 10.3176/proc.2021.4.23

Authors
Babak Omranpour, Lembit Kommel, Fjodor Sergejev, Julia Ivanisenko, Maksim Antonov, Marco A. L. Hernandez-Rodriguez, Edgar Garcia-Sanchez
Abstract

High Pressure Torsion Extrusion (HPTE) as a novel approach in mechanical nanostructuring of metallic materials and alloys has the potential to be utilized in industrial applications due to its unique features in fabricating bulk-nanostructured materials with enhanced mechanical and functional properties. Three different HPTE regimes based on the extrusion speed of the punch (v, mm/min) and rotational speed of the die (ω, rpm) were used in this work: v7w1, v1w1, and v1w3. The grain refinement obtained by this technique was outstanding since the initial grain size of 120 μm in annealed conditions was reduced to the final grain size of 0.7 μm in v1w3 in merely one pass of extrusion; however, each regime showed a different level of grain refinement depending on the imposed strain. Examination of the tribological properties by reciprocal wear testing in dry conditions revealed no significant change in the coefficient of friction; nevertheless, the mechanism of the wear from adhesion shifted to abrasion and the amount of displaced volume decreased. This modification is associated with the improvement of hardness and the reduction of plasticity in materials that confined the plastic shearing. Increasing the induced strain by changing the HPTE regimes decreased the overall displaced volume and reduced the built-up edge around the wear track.

References

1. Jung, A., Diebels, S. and Lach, E. Improved mechanical properties by nanostructuring – Specific considerations under dynamic load conditions. In Handbook of Mechanical Nanostructuring, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015, 181–209.
https://doi.org/10.1002/9783527674947.ch9

2. Kommel, L., Shahreza, B. O. and Mikli, V. Microstructure and physical-mechanical properties evolution of pure tantalum processed with hard cyclic viscoplastic deforma­tion. Int. J. Refract. Met. Hard Mater., 2019, 83, 104983.
https://doi.org/10.1016/j.ijrmhm.2019.104983

3. Semenov, V. I., Shuster, L. S., Huang, S. J., Rajendran, R., Chertovskikh, S. V. and Shibakov, V. G. Comparative evaluation of the tribological properties of low-and medium-carbon steels after heat treatment and severe plastic deformation. Rev. Adv. Mater. Sci., 2016, 45, 28–35.

4. Edalati, K., Ashida, M., Horita, Z., Matsui, T. and Kato, H. Wear resistance and tribological features of pure aluminum and Al-Al2O3 composites consolidated by high-pressure torsion. Wear, 2014, 310(1–2), 83–89.
https://doi.org/10.1016/j.wear.2013.12.022

5. Abd El Aal, M. I., El Mahallawy, N., Shehata, F. A., Abd El Hameed, M., Yoon, E. Y. and Kim, H. S. Wear properties of ECAP-processed ultrafine grained Al-Cu alloys. Mater. Sci. Eng. A, 2010, 527(16–17), 3726–3732.
https://doi.org/10.1016/j.msea.2010.03.057

6. Talachi, A. K., Eizadjou, M., Manesh, H. D. and Janghorban, K. Wear characteristics of severely deformed aluminum sheets by accumulative roll bonding (ARB) process. Mater. Charact., 2011, 62, 12–21.
https://doi.org/10.1016/j.matchar.2010.10.003

7. Gao, N., Wang, C. T., Wood, R. J. K. and Langdon, T. G. Tribological properties of ultrafine-grained materials processed by severe plastic deformation. J. Mater. Sci., 2012, 47(12), 4779–4797.
https://doi.org/10.1007/s10853-011-6231-z

8. Kommel, L., Põdra, P., Mikli, V. and Omranpour, B. Gradient microstructure in tantalum formed under the wear track during dry sliding friction. Wear, 2021, 466467, 203573.
https://doi.org/10.1016/j.wear.2020.203573

9. Zhang, Z., Hosoda, S., Kim, I. S. and Watanabe, Y. Grain refining performance for Al and Al-Si alloy casts by addition of equal-channel angular pressed Al-5 mass% Ti alloy. Mater. Sci. Eng. A, 2006, 425, 55–63.
https://doi.org/10.1016/j.msea.2006.03.018

10. Wang, C. T., Gao, N., Wood, R. J. K. and Langdon, T. G. Wear behavior of an aluminum alloy processed by equal-channel angular pressing. J. Mater. Sci., 2011, 46(1), 123–130.
https://doi.org/10.1007/s10853-010-4862-0

11. Oh-Ishi, K., Horita, Z., Furukawa, M., Nemoto, M. and Langdon, T. G. Optimizing the rotation conditions for grain refinement in equal-channel angular pressing. Metall. Mater. Trans. A, 1998, 29A, 2011–2013.
https://doi.org/10.1007/s11661-998-0027-z

12. Omranpour, B., Ivanisenko, Y., Kulagin, R., Kommel, L., Garcia Sanchez, E., Nugmanov, D., Scherer, T., Heczel, A. and Gubicza, J. Evolution of microstructure and hardness in aluminum processed by high pressure torsion extrusion. Mater. Sci. Eng. A, 2019, 762, 138074.
https://doi.org/10.1016/j.msea.2019.138074

13. Omranpour, B. S., Kommel. L., Sanchez, E. G., Ivanisenko, Y. and Huot, J. Enhancement of hydrogen storage in metals by using a new technique in severe plastic deformations. Key Eng. Mater., 2019, 799, 173–178.
https://doi.org/10.4028/www.scientific.net/KEM.799.173

14. Omranpour, B., Kommel, L., Sergejev, F., Ivanisenko, J., Antonov, M., Hernandez-Rodriguez, M. A. L. and Garcia-Sanchez, E. Analysis of the reciprocal wear testing of Aluminum AA1050 processed by a novel mechanical nanostructuring technique. IOP Conf. Ser. Mater. Sci. Eng., 2021, 1140(1), 012051.
https://doi.org/10.1088/1757-899X/1140/1/012051

15. Ivanisenko, Y., Kulagin, R., Fedorov, V., Mazilkin, A., Scherer, T., Baretzky, B. and Hahn, H. High pressure torsion extrusion as a new severe plastic deformation process. Mater. Sci. Eng. A, 2016, 664, 247–256.
https://doi.org/10.1016/j.msea.2016.04.008

16. Omranpour, B., Kulagin, R., Ivanisenko, Y. and Garcia- Sanchez, E. Experimental and numerical analysis of HPTE on mechanical properties of materials and strain distribution. IOP Conf. Ser. Mater. Sci. Eng., 2017, 194.
https://doi.org/10.1088/1757-899X/194/1/012047

17. Estrin, Y., Molotnikov, A., Davies, C. H. J. and Lapovok, R. Strain gradient plasticity modelling of high-pressure torsion. J. Mech. Phys. Solids, 2008, 56(4), 1186–1202.
https://doi.org/10.1016/j.jmps.2007.10.004

18. Williams, J. A. Engineering tribology. Cambridge University Press, 2005.
https://doi.org/10.1017/CBO9780511805905

19. La, P., Ma, J., Zhu, Y. T., Yang, J., Liu, W., Xue, Q. and Valiev, R. Z. Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Mater., 2005, 53, 5167–5173.
https://doi.org/10.1016/j.actamat.2005.07.031

Back to Issue