ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Thermal analysis of the friction stir welding process based on boundary conditions and operating parameters; pp. 516–523
PDF | 10.3176/proc.2021.4.20

Authors
Moustafa Boukraa, David Bassir, Nadhir Lebaal, Tawfiq Chekifi, Mouloud Aissani, Nacer Tal Ighil, Amina Mataoui
Abstract

Modelling of friction stir welding (FSW) remains a complicated task, as it is crucial to predict the mechanical properties of the final welded part. This research focuses on the numerical simulation aspect of the alloy material AA2195-T8. 3D transient thermal model was applied to simulate the heat transfer phenomena in the welding phase. In this model, the FSW tool is considered as a circular heat source moving in a rectangular plate having a cooling surface and subjected to non-uniform and non-homogeneous boundary conditions. To solve the thermal problem, the finite element method was used as part of a Lagrangian formulation. The obtained results allow us to determine the maximum value of the temperature in the Nugget zone of the welded joint. Sensitivity analysis of the operating parameters was also investigated to determine the thermal cycle and the temperature distribution during this welding process. Our results were successfully compared with the ones available in the literature with good agreement.

References

1. Verma, S. and Misra, J. P. A critical review of friction stir welding process. In DAAM International Scientific Book (Katalinic, B., ed.). DAAM International, Vienna, 2015, 249–266.
https://doi.org/10.2507/daaam.scibook.2015.22

2. Nandan, R., DebRoy, T. and Bhadeshia, H. K. D. H. Recent advances in friction-stir welding – Process, weldment structure and properties. Prog. Mater. Sci., 2008, 53(6), 980–1023. 
https://doi.org/10.1016/j.pmatsci.2008.05.001

3. Aissani, M., Guessasma, S., Zitouni, A., Hamzaoui, R., Bassir, D. and Benkedda, Y. Three-dimensional simu­lation of 304L steel TIG welding process: Contribution of the thermal flux. Appl. Therm. Eng., 2015, 85, 822–832. 
https://doi.org/10.1016/j.applthermaleng.2015.06.035

4. Hassan, A. S., Mahmoud, T. S., Mahmoud, F. H. and Khalifa, T. A. Friction stir welding of dissimilar A319 and A356 aluminium cast alloys. Sci. Technol. Weld. Join., 2010, 15(5), 414–422. 
https://doi.org/10.1179/136217110X12720264008358

5. Sun, Z., Wu, C. S. and Kumar, S. Determination of heat generation by correlating the interfacial friction stress with temperature in friction stir welding. J. Manuf. Process., 2018, 31, 801–811. 
https://doi.org/10.1016/j.jmapro.2018.01.010

6. Gibson, B. T., Lammlein, D. H., Prater, T. J., Longhurst, W. R., Cox, C. D., Ballun, M. C. et al. Friction stir welding: Process, automation, and control. J. Manuf. Process, 2014, 16(1), 56–73. 
https://doi.org/10.1016/j.jmapro.2013.04.002

7. Taysom, B. S., Sorensen, C. D. and Hedengren, J. D. A comparison of model predictive control and PID temperature control in friction stir welding. J. Manuf. Process., 2017, 29, 232–241. 
https://doi.org/10.1016/j.jmapro.2017.07.015

8. Lakshmi Balasubramaniam, G., Boldsaikhan, E., Fukada, S., Fujimoto, M. and Kamimuki, K. Effects of refill friction stir spot weld spacing and edge margin on mechanical prop­erties of multi-spot-welded panels. J. Manuf. Mater. Process., 2020, 4(2), 55. 
https://doi.org/10.3390/jmmp4020055

9. Boukraa, M., Lebaal, N., Mataoui, A., Settar, A., Aissani, M. and Tala-Ighil, N. Friction stir welding process improvement through coupling an optimization procedure and three-dimensional transient heat transfer numerical analysis. J. Manuf. Process., 2018, 34(Part A), 566–578. 
https://doi.org/ 10.1016/j.jmapro.2018.07.002

10. Singh, K., Singh, G. and Singh, H. Review on friction stir welding of magnesium alloys. J. Magnes. Alloys, 2018, 6(4), 399–416. 
https://doi.org/10.1016/j.jma.2018.06.001

11. Netto, N., Zhao, L., Soete, J., Pyka, G. and Simar, A. Manufacturing high strength aluminum matrix composites by friction stir processing: An innovative approach. J. Mater. Process. Technol., 2020, 283, 116722. 
https://doi.org/10.1016/j.jmatprotec.2020.116722

12. Moraitis, G. A. and Labeas, G. N. Investigation of friction stir welding process with emphasis on calculation of heat generated due to material stirring. Sci. Technol. Weld. Join., 2010, 15(2), 177–184. 
https://doi.org/10.1179/136217109X12537145658779

13. Derazkola, H. A., Khodabakhshi, F. and Simchi, A. Friction-stir lap-joining of aluminium-magnesium/poly-methyl-methacrylate hybrid structures: thermo-mechanical modelling and experimental feasibility study. Sci. Technol. Weld. Join., 2018, 23(1), 35–49. 
https://doi.org/10.1080/13621718.2017.1323441

14. Derazkola, H. A. and Khodabakhshi, F. Development of fed friction-stir (FFS) process for dissimilar nanocomposite welding between AA2024 aluminum alloy and poly­carbonate (PC). J. Manuf. Process., 2020, 54, 262–273. 
https://doi.org/10.1016/j.jmapro.2020.03.020

15. Chao, Y. J., Qi, X. and Tang, W. Heat transfer in friction stir welding – Experimental and numerical studies. J. Manuf. Sci. Eng., 2003, 125(1), 138–145. 
https://doi.org/10.1115/1.1537741

16. Majak, J., Shvartsman, B., Pohlak, M., Karjust, K., Eerme, M. and Tungel, E. Solution of fractional order differential equation by the Haar Wavelet method. Numerical con­vergence analysis for most commonly used approach. AIP Conf. Proc., 2016, 1738(1), 480110. 
https://doi.org/10.1063/1.4952346

Back to Issue