ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
The effect of water and zinc loading on LPG catalytic cracking for light olefin production using Response Surface Methodology; pp. 135–147
PDF | 10.3176/proc.2021.2.01

Authors
Bijan Barghi, Allan Niidu, Ramin Karimzadeh
Abstract

Optimization of liquefied petroleum gas (LPG) catalytic cracking is one of the most fundamental issues in light olefin production. The Response Surface Methodology (RSM) 5-level-3-factor central composite design (CCD) was used to investigate the effects of zinc loading, water and temperature on ZSM-5 performance. The results show that there is an optimum point for initial propylene and ethylene yields by changing the temperature (from 566 to 634 °C) of zinc metal loading in ZSM-5 (from 0.23 to 1.57 wt%) and the water/LPG ratio (from 0.32 to 2.68), with the yields being 22.34 wt% and 28.20 wt%, respectively. The experimental data were satisfactorily fitted to quadratic models by using multiple regression analysis over the range of operating conditions. The Response Surface Methodology determined the optimal Zn loading set (0.96 wt%), water/LPG ratio (1.86) and temperature (633.6 °C) to obtain the best result for the initial yields of ethylene and propylene. For ethylene and propylene yield responses, in a quadratic model, F-values showed 15.08 and 54.93, respectively, which states that the models were well-fitted.

References

1. Mohiuddin, E., Mdleleni, M. M. and Key, D. Catalytic cracking of naphtha: The effect of Fe and Cr impregnated ZSM-5 on olefin selectivity. Appl. Petrochem. Res., 2018, 8, 119–129.
https://doi.org/10.1007/s13203-018-0200-2

2. Barghi, B. and Karimzadeh, R. Modeling of ZnZSM-5 deactivation during liquefied petroleum gas catalytic cracking in the presence of steam. React. Kinet. Mech. Catal., 2017, 120(2), 753–773.
https://doi.org/10.1007/s11144-016-1126-2

3. Barghi, B. and Karimzadeh, R. Kinetic modeling based on complex reaction theory for n-butane catalytic cracking over HZSM-5. React. Kinet. Mech. Catal., 2015, 116, 507–522. 
https://doi.org/10.1007/s11144-015-0918-0

4. Gu, B., Zhou, C., He, S., Moldovan, S., Chernavskii, P. A., Ordomsky, V. V. et al. Size and promoter effects on iron nanoparticles confined in carbon nanotubes and their catalytic performance in light olefin synthesis from syngas. Catal. Today, 2020, 357, 203–213.
https://doi.org/10.1016/j.cattod.2019.05.054

5. Narasimharao, K. and Alshehri, A. Gold supported yttrium oxide nanorods for catalytic oxidative cracking of n-propane to light olefins. Fuel, 2020, 278, 118375.
https://doi.org/10.1016/j.fuel.2020.118375

6. Urata, K., Furukawa, S. and Komatsu, T. Location of coke on H-ZSM-5 zeolite formed in the cracking of n-hexane. Appl. Catal. A-Gen., 2014, 475, 335–340.
https://doi.org/10.1016/j.apcata.2014.01.050

7. Ishihara, A., Ninomiya, M., Hashimoto, T. and Nasu, H. Catalytic cracking of C12-C32 hydrocarbons by hierarchical β- and Y-zeolite-containing mesoporous silica and silica-alumina using Curie point pyrolyzer. J. Anal. Appl. Pyrolysis, 2020, 150, 104876.
https://doi.org/10.1016/j.jaap.2020.104876

8. Liu, W., Liu, X., Gu, Y., Liu, Y., Yu, Z., Lyu, Y. et al. A new composite consisting of Y zeolite and ZrO2 for fluid catalytic cracking reaction. Compos. B. Eng., 2020, 200, 108317.
https://doi.org/10.1016/j.compositesb.2020.108317

9. Ji, Y., Yang, H., Zhang, Q. and Yan, W. Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane. J. Solid State Chem., 2017, 251,7–13.
https://doi.org/10.1016/j.jssc.2017.03.023

10. Wang, X., Gao, X., Dong, M., Zhao, H. and Huang, W. Production of gasoline range hydrocarbons from methanol on hierarchical ZSM-5 and Zn/ZSM-5 catalyst prepared with soft second template. J. Energy Chem., 2015, 24(4), 490–496.
https://doi.org/10.1016/j.jechem.2015.06.009

11. Wattanapaphawong, P., Reubroycharoen, P., Mimura, N., Sato, O. and Yamaguchi, A. Effect of carbon number on the production of propylene and ethylene by catalytic cracking of straight-chain alkanes over phosphorus-modified ZSM-5. Fuel Process. Technol., 2020, 202, 106367.
https://doi.org/10.1016/j.fuproc.2020.106367

12. Zhang, C., Kwak, G., Lee, Y.-J., Jun, K.-W., Gao, R., Park, H.-G. et al. Light hydrocarbons to BTEX aromatics over Zn-modified hierarchical ZSM-5 combined with enhanced catalytic activity and stability. Microporous Mesoporous Mater., 2019, 284, 316–326.
https://doi.org/10.1016/j.micromeso.2019.04.041

13. Wang, L., Lei, H., Bu, Q., Ren, S., Wei, Y., Zhu, L. et al. Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor. Fuel, 2014, 129, 78–85.
https://doi.org/10.1016/j.fuel.2014.03.052

14. Ni, Y., Sun, A., Wu, X., Hai, G., Hu, J., Li, T. et al. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. J. Nat. Gas Chem., 2011, 20(3), 237–242.
https://doi.org/10.1016/S1003-9953(10)60184-3

15. Wang, X., Zhang, X. and Wang, Q. N-dodecane hydroisomerization over Pt/ZSM-22: Controllable micro­porous Brönsted acidity distribution and shape-selectivity. Appl. Catal. A-Gen., 2020, 590, 117335.
https://doi.org/10.1016/j.apcata.2019.117335

16. Huyen, P. T., Trinh, V. D., Portilla, M. T. and Martínez, C. Influence of boron promotion on the physico-chemical properties and catalytic behavior of Zn/ZSM-5 in the aromatization of n-hexane. Catal. Today., 2021, 366, 97–102.
https://doi.org/10.1016/j.cattod.2020.03.030

17. Oseke, G. G., Atta, A. Y., Mukhtar, B., El-Yakubu, B. J. and Aderemi. B. O. Increasing the catalytic stability of micro­porous Zn/ZSM-5 with copper for enhanced propane aromatization. J. King Saud Univ. Eng. Sci., 2020.
https://doi.org/10.1016/j.jksues.2020.07.014

18. Wei, Z., Chen, L., Cao, Q., Wen, Z., Zhou, Z., Xu, Y. et al. Steamed Zn/ZSM-5 catalysts for improved methanol aromatization with high stability. Fuel Process. Technol., 2017, 162, 66–77.
https://doi.org/10.1016/j.fuproc.2017.03.026

19. Wei, Y., Liu, Z., Wang, G., Qi, Y., Xu, L., Xie, P. et al. Production of light olefins and aromatic hydrocarbons through catalytic cracking of naphtha at lowered temperature.  Stu. Surf. Sci. Catal., 2005, 158(B), 1223–1230.
https://doi.org/10.1016/S0167-2991(05)80468-9

20. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. and Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, 76(5), 965–977.
https://doi.org/10.1016/j.talanta.2008.05.019

21. Chen, L., Hu, J., Lin, F., Cadigan, C., Cao, W., Qi, Z. et al. Self-assembled single-crystalline ZnO nanostructures. CrystEngComm., 2013, 15(19), 3780–3784.
https://doi.org/10.1039/c3ce40167g

22. Bi, J., Liu, M., Song, C., Wang, X. and Guo, X. C2–C4 light olefins from bioethanol catalyzed by Ce-modified nano­crystalline HZSM-5 zeolite catalysts. Appl. Catal. B, 2011, 107(1–2), 68–76.
https://doi.org/10.1016/j.apcatb.2011.06.038

23. Varzaneh, A. Z., Kootenaei, A. H. S., Towfighi, J. and Mohamadalizadeh, A. Optimization and deactivation study of Fe–Ce/HZSM-5 catalyst in steam catalytic cracking of mixed ethanol/naphtha feed. J. Anal. Appl. Pyrolysis, 2013, 102, 144–153. 
https://doi.org/10.1016/j.jaap.2013.01.020

24. Akah, A., Williams, J. and Ghrami, M. An overview of light olefins production via steam enhanced catalytic cracking. Catal. Surv. from Asia, 2019, 23, 265–276.
https://doi.org/10.1007/s10563-019-09280-6

25. Barghi, B., Fattahi, M. and Khorasheh, F. Kinetic modeling of propane dehydrogenation over an industrial catalyst in the presence of oxygenated compounds. React. Kinet. Mech. Catal., 2012, 107(1), 141–155.
https://doi.org/10.1007/s11144-012-0455-z

26. Ghrib, Y., Frini-Srasra, N., Srasra, E., Martínez-Triguero, J. and Corma, A. Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts. Catal. Sci. Technol., 2018, 8(3), 716–725.
https://doi.org/10.1039/C7CY01477E

27. Nestler, H. C. Pyrolysis and steam cracking system. Google Patents US10280377, 7 May 2019.

28. Akah, A. Application of rare earths in fluid catalytic cracking: A review. J. Rare Earths, 2017, 35(10), 941–956.
https://doi.org/10.1016/S1002-0721(17)60998-0

29. Müller, S., Liu, Y., Kirchberger, F. M., Tonigold, M., Sanchez-Sanchez, M. and Lercher, J. A. Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons. J. Am. Chem. Soc., 2016, 138(49), 15994–16003.
https://doi.org/10.1021/jacs.6b09605

30. Barghi, B., Fattahi, M. and Khorasheh, F. The modeling of kinetics and catalyst deactivation in propane dehydrogenation over Pt-Sn/γ-Al2O3 in presence of water as an oxygenated additive. Pet. Sci. Technol., 2014, 32(10), 1139–1149.
https://doi.org/10.1080/10916466.2011.631071

31. Tynjälä, P. and Pakkanen, T. T. Acidic properties of ZSM-5 zeolite modified with Ba2+, Al3+ and La3+ ion-exchange. J. Mol. Catal. A Chem., 1996, 110(2), 153–161.
https://doi.org/10.1016/1381-1169(96)00159-8

32. Li, Y., Liu, S., Xie, S. and Xu, L. Promoted metal utilization capacity of alkali-treated zeolite: Preparation of Zn/ZSM-5 and its application in 1-hexene aromatization. Appl. Catal. A-Gen., 2009, 360(1), 8–16.
https://doi.org/10.1016/j.apcata.2009.02.039

33. Almutairi, S. M. T., Mezari, B., Magusin, P. C. M., Pidko, E. A. and Hensen, E. J. M. Structure and reactivity of Zn-modified ZSM-5 zeolites: the importance of clustered cationic Zn complexes. ACS Catal., 2012, 2(1), 71–83.
https://doi.org/10.1021/cs200441e

34. Roshanaei, A. and Alavi, S. M. Kinetic study of propane aromatization over Zn/HZSM-5 zeolite under conditions of catalyst deactivation using genetic algorithm. J. Serbian Chem. Soc., 2018, 83(4), 473–488.
https://doi.org/10.2298/JSC170621007R

Back to Issue