ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Experimental analysis of wavelet decomposition on edge detection; pp. 284–298
PDF | https://doi.org/10.3176/proc.2019.3.06

Authors
Vladimir Maksimovic, Predrag Lekic, Mile Petrovic, Branimir Jakšić, Petar Spalević
Abstract

The influence of different wavelet transformations and decomposition on edge detection was examined, using convenient operators to images of various complexities. Berkeley Segmentation Database images with the corresponding ground truth were used. The categorization of those images was accomplished according to the degree of complexity in three groups (small, medium, and large number of details), by using discrete cosine transformation and discrete wavelet transformation. Three levels of decomposition for eight wavelet transformations and five operators for edge detection were applied on these images. As an objective measure of the quality for edge detection, the parameters “performance ratio” and “F-measure” were used.
The obtained results showed that edge detection operators behaved differently in images with a different number of details. Decomposition significantly degrades the image, but useful information can be extracted at the third level of decomposition, because the image with a different number of details behaves differently at each level. For an image with a certain number of details, decomposition Level 3 in some cases gives better results than Level 2. The obtained results can be applied to image compression with different complexity. By selecting a certain combination of operators and decomposition levels, a higher compression ratio with preserving a larger amount of useful image information can be achieved. Depending on the image resolution whereby the number of details varies, an operator optimization can be performed according to the decomposition level in order to obtain the best possible edge detection.

References

    1.  Kim, H., No, A., and Lee, H. SPIHT algorithm with adaptive selection of compression ratio depending on DWT coefficients. In IEEE Trans. Multimedia, 2018, 20(12), 3200–3211.
https://doi.org/10.1109/TMM.2018.2832604

    2.  Folorunso, O., Vincent, O. R., and Dansu, B. M. Image edge detection: a knowledge management technique for visual scene analysis. Inform. Manag. Comput. Secur. (IMCS), 2007, 15(1), 23–32.
https://doi.org/10.1108/09685220710738741

    3.  Senthilkumaran, N. and Reghunadhan, R. Edge detection techniques for image segmentation – a survey of soft computing approaches. Int. J. Recent Trends Eng. (IJRTE), 2009, 1(2), 250–254.

    4.  Jiang, B. Real-time multi-resolution edge detection with pattern analysis on graphics processing unit. J. Real-Time Image Process. (JRTIP), 2018, 14(2), 293–321.
https://doi.org/10.1007/s11554-014-0450-x

    5.  Maini, R. and Aggarwal, H. Study and comparison of various image edge detection techniques. Int. J. Image Process. (IJIP), 2009, 3(1), 1–11.

    6.  Rajab, M. I. Performance evaluation of image edge detection techniques. Int. J. Comput. Sci. Secur. (IJCSS), 2016, 10(5), 170–185.

    7.  Kuang, T., Zhu, Q.-X., and Sun, Y. Edge detection for highly distorted images suffering Gaussian noise based on improve Canny algorithm. Kybernetes, 2011, 40(5/6), 883–893.
https://doi.org/10.1108/03684921111142430

    8.  Liu, X. and Xue, F. Moving target detection based on adaptive edge extraction algorithm. In 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, 2018, 1206–1211.
https://doi.org/10.1109/ICIEA.2018.8397893

    9.  Chen, Y., Wang, D., and Bi, G. An image edge recognition approach based on multi-operator dynamic weight detection in virtual reality scenario. Clust. Comput., 2018, 1–9.
https://doi.org/10.1007/s10586-017-1604-y

 10.  Abo-Zahhad, M., Gharieb, R. R., Ahmed, S. M., and Donkol, A. A. Edge detection with a preprocessing approach. J. Signal Inform. Process. (JSIP), 2014, 5(4), 123–134.
https://doi.org/10.4236/jsip.2014.54015

 11.  Sharma, T., Shokeen, V., and Mathur, S. Comparison of approaches of distributed satellite image edge detection on Hadoop. In Second International Conference on Inventive Communication and Computational Technologies (ICICCT), 2018, 645–649.
https://doi.org/10.1109/ICICCT.2018.8472982

 12.  Rohini, S. and Mukesh, K. Algorithm and technique on various edge detection: a survey. Signal Process. Int. J. (SIPIJ), 2013, 4(3), 65–75.
https://doi.org/10.5121/sipij.2013.4306

 13.  Shekar, S. C. and Ravi, D. J. Image enhancement and compression using edge detection technique. Int. Res. J. Eng. Technol. (IRJET), 2017, 4(5), 1013–1017.

 14.  Frutos-López, M., Orellana-Quirós, D., Pujol-Alcolado, J. C., and Díaz-de-María, F. An improved fast mode decision algorithm for intraprediction in H.264/AVC video coding. Signal Process. Image Commun. (SPIC), 2010, 25(10), 709–716.
https://doi.org/10.1016/j.image.2010.10.005

 15.  Gonzalez, R. C. and Woods, R. E. Digital Image Processing, 2nd Edition. Prentice Hall, Upper Saddle River, NJ, 2002.

 16.  Rani, V. and Sharma, D. A study of edge-detection methods. Int. J. Sci. Eng. Technol. Res. (IJSETR), 2012, 1(6), 62–65.

 17.  Chaganti, V. R. Edge Detection of Noisy Images Using 2-D Discrete Wavelet Transform. Florida State University Libraries, Tallahassee, FL, 2005.

 18.  Maleknejad, K., Sohrabi, S., and Rostami, Y. Application of wavelet transform analysis in medical frames compression. Kybernetes, 2008, 37(2), 343–351.
https://doi.org/10.1108/03684920810851221

 19.  Karunakar, A. K. and Manohara Pai, M. M. Interactive region of interest scalability for wavelet based scalable video coder.
J. Real-Time Image Process. (JRTIP), 2011, 6(2), 93–100.

 20.  Ilic, S., Petrovic, M., Jaksic, B., Spalevic, P., Lazic, Lj., and Milosevic, M. Experimental analysis of picture quality after compression by different methods. Prz. Elektrotechniczn, 2013, 89(11/2013), 190–194.

 21.  Jabbar, S. I., Day, C. R., Heinz, N., and Chadwick, E. K. Using Convolutional Neural Network for edge detection in musculoskeletal ultrasound images. In Proceedings of 2016 International Joint Conference on Neural Networks (IJCNN), 2016, 4619–4626.

 22.  Singh, S., Prasad, A., Srivastava, K., and Bhattacharya, S. Threshold modeling for cellular logic array processing based edge detection algorithm. In Proceedings of International Conference on Computing, Communication and Automation (ICCCA2017), 2017, 1158–1162.
https://doi.org/10.1109/CCAA.2017.8229972

 23.  Khaire, P. A. and Thakur, N. V. A fuzzy set approach for edge detection. Int. J. Image Process. (IJIP), 2012, 6(6), 403–412.

 24.  Mastriani, M. Union is strength in lossy image compression. Int. J. Signal Process. (IJSP), 2009, 5(2), 112–119.

Back to Issue