ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Morita contexts, ideals, and congruences for semirings with local units; pp. 252–259
PDF | https://doi.org/10.3176/proc.2018.3.09

Author
Laur Tooming
Abstract

We consider Morita contexts for semirings that have certain local units but not necessarily an identity element. We show that the existence of a Morita context with unitary bisemimodules and surjective maps implies that the two semirings involved have isomorphic quantales of ideals and lattices of congruences.

References

1. Morita, K. Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 1958, 6, 83–142.

2. Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules. Graduate Texts in Mathematics 13. Springer Sci. Bus. Media, New York, 1974.
https://doi.org/10.1007/978-1-4684-9913-1

3. Abrams, G. D. Morita equivalence for rings with local units. Commun. Algebra, 1983, 11, 801–837.
https://doi.org/10.1080/00927878308822881

4. Ánh, P. N. and Ma´rki, L. Morita equivalence for rings without identity. Tsukuba J. Math., 1987, 11, 1–16.
https://doi.org/10.21099/tkbjm/1496160500

5. Banaschewski, B. Functors into the categories of M-sets. Abh. Math. Sem. Univ. Hamburg, 1972, 38, 49–64.

6. Knauer, U. Projectivity of acts and Morita equivalence of semigroups. Semigroup Forum, 1972, 3, 359–370.
https://doi.org/10.1007/BF02572973

7. Talwar, S. Morita equivalence for semigroups. J. Aust. Math. Soc., 1995, 59, 81–111.
https://doi.org/10.1017/S1446788700038489

8. Katsov, Y. and Nam, T. G. Morita equivalence and homological characterization of semirings. J. Algebra Appl., 2011, 10, 445–473.
https://doi.org/10.1142/S0219498811004793

9. Sardar, S. K., Gupta, S., and Saha, B. C. Morita equivalence of semirings and its connection with Nobusawa G-semirings with unities. Algebra Colloq., 2015, 22, 985–1000.
https://doi.org/10.1142/S1005386715000826

10. Sardar, S. K. and Gupta, S. Morita invariants of semirings. J. Algebra Appl., 2016, 15.

11. Gupta, S. and Sardar, S. K. Morita invariants of semirings – II. Asian-European J. Math., 2018, 11.

12. Liu, H. Morita equivalence for semirings without identity. Ital. J. Pure Appl. Math., 2016, 36, 495–508.

13. Laan, V. and Márki, L. Morita invariants for semigroups with local units. Monatsh. Math., 2012, 166, 441–451.
https://doi.org/10.1007/s00605-010-0279-8

14. Golan, J. S. Semirings and their Applications. Kluwer Acad. Publ., Dordrecht–Boston–London, 1999.
https://doi.org/10.1007/978-94-015-9333-5

15. Rosenthal, K. I. Quantales and their Applications. Pitman Research Notes in Mathematics Series 234. Longman Sci. Tech., London, 1990.

16. Katsov, Y. Tensor products and injective envelopes of semimodules over additively regular semirings. Algebra Colloq., 1997, 4, 121–131.

17. Katsov, Y. Toward homological characterization of semirings: Serre’s conjecture and Bass’s perfectness in a semiring context. Algebra Univers., 2004, 52, 197–214.
https://doi.org/10.1007/s00012-004-1866-0

18. Laan, V. Context equivalence of semigroups. Period. Math. Hung., 2010, 60, 81–94.
https://doi.org/10.1007/s10998-010-1081-z

Back to Issue