ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Modelling stormwater runoff, quality, and pollutant loads in a large urban catchment; pp 225–242
PDF | https://doi.org/10.3176/proc.2017.3.02

Authors
Bharat Maharjan, Karin Pachel, Enn Loigu
Abstract

 

Identification of stormwater runoff, its pollution load, and their implications for land use is essential in implementing stormwater management strategies. Hydrologic modelling provides an opportunity to assess them at limited data resources. In this study, the stormwater management model SWMM5 is applied for model development for a large basin in Tallinn. A geographic information system tool is used for subcatchment delineation, identification of directly connected impervious areas (DCIAs), and preparation of catchment input parameters. The model is calibrated and verified using sampled storm events to estimate event mean concentrations and annual loads. The predictive capability of the model for quantity is good and for quality moderate. The findings from the model show the percentage of the impervious area in the large catchment to be low at 19.7%. Although DCIAs, in particular roads and roofs, have relatively smaller areas they significantly impact runoff production (up to 75%) and loads (up to 66% total phosphorus and 71% total suspended solids). The first flush at the beginning of runoff is less important in case of a low intensity of rainfall, but heavy rain and snowmelt generate substantial runoff and pollution loads. When grab sampling is applied, it should focus on the medium and large events within 6 hours of storm commencement in order to achieve better mass estimations.

 

References

 

Ballo, S., Liu, M., Hou, L., and Chang, J. 2009. Pollutants in stormwater runoff in Shanghai (China): implications for management of urban runoff pollution. Prog. Nat. Sci., 19(7), 873–880.
https://doi.org/10.1016/j.pnsc.2008.07.021

Barałkiewicz, D., Chudzińska, M., Szpakowska, B., Świerk, D., Gołdyn, R., and Dondajewska, R. 2014. Storm water contamination and its effect on the quality of urban surface waters. Environ. Monit. Assess., 186(10), 6789–6803.
https://doi.org/10.1007/s10661-014-3889-0

Bedient, P. B. and Huber, W. C. 1988. Hydrology and Floodplain Analysis. Addison-Wesley, Reading, MA.

Bertrand-Krajewski, J.-L. 2007. Stormwater pollutant loads modelling: epistemological aspects and case studies on the influence of field data sets on calibration and verification. Water Sci. Technol., 55(4), 1–17.
https://doi.org/10.2166/wst.2007.090

Bertrand-Krajewski, J.-L., Chebbo, G., and Saget, A. 1998. Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon. Water Res., 32(8), 2341–2356.
https://doi.org/10.1016/S0043-1354(97)00420-X

Brezonik, P. L. and Stadelmann, T. H. 2002. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA. Water Res., 36(7), 1743–1757.
https://doi.org/10.1016/S0043-1354(01)00375-X

Burns, M. J., Walsh, C. J., Fletcher, T. D., Ladson, A. R., and Hatt, B. E. 2015. A landscape measure of urban stormwater runoff effects is a better predictor of stream condition than a suite of hydrologic factors. Ecohydrology, 8(1), 160–171.
https://doi.org/10.1002/eco.1497

Burszta-Adamiak, E. and Mrowiec, M. 2013. Modelling of green roofs' hydrologic performance using EPA's SWMM. Water Sci. Technol., 68(1), 36–42.
https://doi.org/10.2166/wst.2013.219

Chiew, F. H. S. and McMahon, T. A. 1999. Modelling runoff and diffuse pollution loads in urban areas. Water Sci. Technol., 39(12), 241–248.
https://doi.org/10.1016/S0273-1223(99)00340-6

Chow, M. F., Yusop, Z., and Toriman, M. E. 2012. Modelling runoff quantity and quality in tropical urban catchments using Storm Water Management Model. Int. J. Environ. Sci. Technol., 9(4), 737–748.
https://doi.org/10.1007/s13762-012-0092-0

Ebrahimian, A., Gulliver, J. S., and Wilson, B. N. 2016. Effective impervious area for runoff in urban watersheds. Hydrol. Process., 30(20), 3717–3729.
https://doi.org/10.1002/hyp.10839

Elliott, A. H. and Trowsdale, S. A. 2007. A review of models for low impact urban stormwater drainage. Environ. Modell. Softw., 22(3), 394–405.
https://doi.org/10.1016/j.envsoft.2005.12.005

EVS. 2015. EVS-EN ISO/IEC 17025:2006. General requirements for the competence of testing and calibration laboratories. Estonian Centre for Standardisation

[EWS] Estonian Weather Service. 2015. Climate Normal, 2015. http://www.ilmateenistus.ee/kliima/kliimanormid ohutemperatuur/?lang=en (accessed 2016-06-28).

Fetter, C. W. 2001. Applied Hydrogeology. Prentice Hall, Upper Saddle River, NJ.

Göbel, P., Dierkes, C., and Coldewey, W. G. 2007. Storm water runoff concentration matrix for urban areas. J. Contam. Hydrol., 91(1–2), 26–42.
https://doi.org/10.1016/j.jconhyd.2006.08.008

Han, K., Kim, Y., Kim, B., Famiglietti, J. S., and Sanders, B. F. 2014. Calibration of stormwater management model using flood extent data. Proceedings of the ICE - Water Management, 167(1), 17–29.
https://doi.org/10.1680/wama.12.00051

HELCOM. 2002. HELCOM Recommendation 23/5, Reduction of Discharges from Urban Areas by the Proper Management of Storm Water Systems. 23rd Meeting, Helsinki, Finland, 5–7 March 2002, Minutes of the Meeting. Annex 7. http://helcom.fi/Recommendations/Rec%2023-5.pdf (accessed 2016-06-15).

HELCOM. 2007. HELCOM Baltic Sea Action Plan. HELCOM Ministerial Meeting. Krakow, Poland, 15 November 2007. http://helcom.fi/Documents/Baltic Sea action plan/BSAP_Final.pdf (accessed 2016-07-12).

Hood, M., Reihan, A., and Loigu, E. 2007. Modeling urban stormwater runoff pollution in Tallinn, Estonia. UWM, international symposium on new directions in urban water management, September. Paris, France.

Horton, R. E. 1933. The rôle of infiltration in the hydrologic cycle. Eos Trans. AGU, 14(1), 446–460.
https://doi.org/10.1029/tr014i001p00446

Huber, W. C., Dickinson, R. E., Barnwell, T. O. Jr., and Branch, A. 1988. Storm Water Management Model, Version 4: User's Manual. EPA/600/3-88-001a. ftp: //152.66.121.2/Oktatas/Epito2000/KozmuhalozatokTervezese-SP2/swmm/Docs/epaswmm1.pdf (accessed 2016-06-12).

James, L. and Burges, S. 1982. Selection, calibration, and testing of hydrologic models. In Hydrologic Modeling of Small Watersheds (Haan, C. T., Johnson, H. P., and Brakensiek, D. L., eds), 1st edition, pp. 437–472. American Society of Agricultural Engineers, St. Joseph, Michigan.

Jang, S., Cho, M., Yoon, J., Yoon, Y., Kim, S., Kim, G., et al. 2007. Using SWMM as a tool for hydrologic impact assessment. Desalination, 212(1), 344–356.
https://doi.org/10.1016/j.desal.2007.05.005

Jayasooriya, V. M. and Ng, A. W. M. 2014. Tools for modeling of stormwater management and economics of green infrastructure practices: a review. Water Air Soil Pollut., 225(8), 1–20.
https://doi.org/10.1007/s11270-014-2055-1

Keskkonnaminister. 2010. Keskkonnaministri 28. juuli 2009. a määruse nr 44 "Pinnaveekogumite moodustamise kord ja nende pinnaveekogumite nimestik, mille seisundiklass tuleb määrata, pinnaveekogumite seisundiklassid ja seisundiklassidele vastavad kvaliteedinäitajate väärtused ning seisundiklasside määramise kord" muutmine [Amendment of the Minister of the Environment Regulation No. 44 of 28 July 2009 "Surface water body formation order and list of surface water bodies whose status class has to be determined, status classes of surface water bodies and quality indicator values corresponding to class statuses and order for determining status classes"]. RT I, 25.11.2010 (in Estonian). www.riigiteataja.ee/akt/ 125112010007 (accessed 2016-08-20).

Khan, S., Lau, S.-L., Kayhanian, M., and Stenstrom, M. K. 2006. Oil and grease measurement in highway runoff – sampling time and event mean concentrations. J. Environ. Eng., 132(3), 415–422.
https://doi.org/10.1061/(ASCE)0733-9372(2006)132:3(415)

Koppel, T., Vassiljev, A., Puust, R., and Laanearu, J. 2014. Modelling of stormwater discharge and quality in urban area. Int. J. Ecol. Sci. Environ. Eng., 1(3), 80–90

Kornecki., T. S., Sabbagh, G. J., and Storm, D. E. 1999. Evaluation of runoff, erosion and phosphorus modeling system – SIMPLE. JAWRA, 35(4), 807–820.
https://doi.org/10.1111/j.1752-1688.1999.tb04176.x

Lee, J. G. and Heaney, J. P. 2003. Estimation of urban imperviousness and its impacts on storm water systems. J. Water Res. Pl.-ASCE, 129(5), 419–426.

Lee, H., Lau, S.-L., Kayhanian, M., and Stenstrom, M. K. 2004. Seasonal first flush phenomenon of urban stormwater discharges. Water Res., 38(19), 4153–4163.
https://doi.org/10.1016/j.watres.2004.07.012

Lee, H., Swamikannu, X., Radulescu, D., Kim, S.-J., and Stenstrom, M. K. 2007. Design of stormwater monitoring programs. Water Res., 41(18), 4186–4196.
https://doi.org/10.1016/j.watres.2007.05.016

Lee, S.-W., Hwang, S.-J., Lee, S.-B., Hwang, H.-S., and Sung, H.-C. 2009. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape Urban Plan., 92(2), 80–89.
https://doi.org/10.1016/j.landurbplan.2009.02.008

Lee, S. C., Park, I. H., Lee, J. I., Kim, H. M., and Ha, S. R. 2010. Application of SWMM for evaluating NPS reduction performance of BMPs. Desalination and Water Treatment, 19(1–3), 173–183.
https://doi.org/10.5004/dwt.2010.1910

Leecaster, M. K., Schiff, K., and Tiefenthaler, L. L. 2002. Assessment of efficient sampling designs for urban stormwater monitoring. Water Res., 36(6), 1556–1564.
https://doi.org/10.1016/S0043-1354(01)00353-0

Liu, A., Goonetilleke, A., and Egodawatta, P. 2012. Inadequacy of land use and impervious area fraction for determining urban stormwater quality. Water Resour. Manag., 26(8), 2259–2265.
https://doi.org/10.1007/s11269-012-0014-4

Liu, A., Egodawatta, P., Guan, Y., and Goonetilleke, A. 2013. Influence of rainfall and catchment characteristics on urban stormwater quality. Sci. Total Environ., 444, 255–262.
https://doi.org/10.1016/j.scitotenv.2012.11.053

Löwe, R., Thorndahl, S., Mikkelsen, P. S., Rasmussen, M. R., and Madsen, H. 2014. Probabilistic online runoff forecasting for urban catchments using inputs from rain gauges as well as statically and dynamically adjusted weather radar. J. Hydrol., 512, 397–407.
https://doi.org/10.1016/j.jhydrol.2014.03.027

Maestre, A. and Pitt, R. 2005. The National Stormwater Quality Database, Version 1.1. A compilation and analysis of NPDES stormwater monitoring information, 2005. http://unix.eng.ua.edu/~rpitt/Research/ms4/mainms4.shtml (accessed 2016-08-10).

Mancipe-Munoz, N. A., Buchberger, S. G., Suidan, M. T., and Lu, T. 2014. Calibration of rainfall–runoff model in urban watersheds for stormwater management assessment. J. Water Res. Pl.-ASCE, 140(6), 05014001.

McCarthy, D. T. 2009. A traditional first flush assessment of E. coli in urban stormwater runoff. Water Sci. Technol., 60(11), 2749–2757.
https://doi.org/10.2166/wst.2009.374

Nash, J. E. and Sutcliffe, J. V. 1970. River flow forecasting through conceptual models part I – A discussion of principles. J. Hydrol., 10(3), 282–290.
https://doi.org/10.1016/0022-1694(70)90255-6

Nazahiyah, R., Yusop, Z., and Abustan, I. 2007. Stormwater quality and pollution loading from an urban residential catchment in Johor, Malaysia. Water Sci. Technol., 56(7), 1–9.
https://doi.org/10.2166/wst.2007.692

Park, M.-H. and Stenstrom, M. K. 2008. Identification of roads for urban runoff pollution management. In IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2008. July 7–11, 2008, Boston, Massachusetts, USA. Proceedings.
https://doi.org/10.1109/IGARSS.2008.4779792

Park, M.-H., Swamikannu, X., and Stenstrom, M. K. 2009. Accuracy and precision of the volume–concentration method for urban stormwater modeling. Water Res., 43(11), 2773–2786.
https://doi.org/10.1016/j.watres.2009.03.045

Riigikogu. 2016. Veeseadus [Water Act]. RT I, 27.12.2016 (in Estonian). https://www.riigiteataja.ee/akt/110032011010 (accessed 2016-08-10).

Rosa, D. J., Clausen, J. C., and Dietz, M. E. 2015. Calibration and verification of SWMM for low impact development. JAWRA, 51(3), 746–757.
https://doi.org/10.1111/jawr.12272

Rossman, L. A. 2010. Storm Water Management Model User's Manual, Version 5.0. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH.

Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., and Smith, D. R. 2005. Impacts of impervious surface on watershed hydrology: a review. Urban Water Journal, 2(4), 263–275.
https://doi.org/10.1080/15730620500386529

Tallinna Linnavolikogu. 2012. Tallinna sademevee strateegia aastani 2030 [Tallinn Stormwater Strategy until 2030]. RT IV, 09.03.2013, 41 (in Estonian), https://www.riigiteataja.ee/akt/409032013041 (accessed 2016-03-16).

Tallinna Linnavolikogu. 2013. Tallinna arengukava 2014–2020 [Tallinn Development Plan 2014–2020]. RT IV, 25.06.2013, 41 (in Estonian). https://www.riigiteataja.ee/akt/425062013041 (accessed 2016-03-16).

Tan, S. B., Chua, L. H., Shuy, E. B., Lo, E. Y.-M., and Lim, L. W. 2008. Performances of rainfall-runoff models calibrated over single and continuous storm flow events. J. Hydrol. Eng., 13(7), 597–607.
https://doi.org/10.1061/(ASCE)1084-0699(2008)13:7(597)

Temprano, J., Arango, Ó., Cagiao, J., Suárez, J., and Tejero, I. 2006. Stormwater quality calibration by SWMM: a case study in Northern Spain. Water SA, 32(1), 55–63.

Tsihrintzis, V. A. and Hamid, R. 1998. Runoff quality prediction from small urban catchments using SWMM. Hydrol. Process., 12(2), 311–329.
https://doi.org/10.1002/(SICI)1099-1085(199802)12:2<311::AID-HYP579>3.0.CO;2-R

Vabariigi valitsus. 2013. Reovee puhastamise ning heit- ja sademevee suublasse juhtimise kohta esitatavad nõuded, heit- ja sademevee reostusnäitajate piirmäärad ning nende nõuete täitmise kontrollimise meetmed [Regulation on Wastewater and Stormwater Management Requirements, Pollution Parameters and Compliance Limits with the Control Measures]. RT I, 13.06.2013, 13 (in Estonian). https://www.riigiteataja.ee/akt/113062013013 (accessed 2016-08-10).

Vezzaro, L. and Mikkelsen, P. S. 2012. Application of global sensitivity analysis and uncertainty quantification in dynamic modelling of micropollutants in stormwater runoff. Environ. Modell. Softw., 27–28, 40–51.
https://doi.org/10.1016/j.envsoft.2011.09.012

Wanielista, M. P. 1990. Hydrology and Water Quality Control. John Wiley and Sons, New York.

Wanielista, M. P., Kersten, R. D., and Eaglin, R. 1997. Hydrology: Water Quantity and Quality Control. John Wiley and Sons, New York.

Yang, G., Bowling, L. C., Cherkauer, K. A., and Pijanowski, B. C. 2011. The impact of urban development on hydrologic regime from catchment to basin scales. Landscape Urban Plan., 103(2), 237–247.
https://doi.org/10.1016/j.landurbplan.2011.08.003

Zgheib, S., Moilleron, R., and Chebbo, G. 2012. Priority pollutants in urban stormwater: part 1 – case of separate storm sewers. Water Res., 46(20), 6683–6692.
https://doi.org/10.1016/j.watres.2011.12.012

Zhang, W. and Li, T. 2015. The influence of objective function and acceptability threshold on uncertainty assessment of an urban drainage hydraulic model with generalized likelihood uncertainty estimation methodology. Water Resour. Manag., 29(6), 2059–2072.
https://doi.org/10.1007/s11269-015-0928-8

Zhang, G., Hamlett, J. M., Reed, P., and Tang, Y. 2013. Multi-objective optimization of low impact development designs in an urbanizing watershed. OJOp, 2(4), 95–108.
https://doi.org/10.4236/ojop.2013.24013

 

Back to Issue