ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Ionic liquids as solvents for making composite materials from cellulose; pp. 255–266
PDF | doi: 10.3176/proc.2016.3.09

Authors
Fred Elhi, Tiina Aid, Mihkel Koel
Abstract

Some imidazolium-based ionic liquids (ILs) are able to dissolve microcrystalline cellulose to form 10 wt% solutions. This allows easy production of cellulose composite materials by mixing the respective solutions. The purpose of this work was to make an environmentally friendly novel material using cellulose as a binder to be an alternative for classical binders in electrically conductive materials. Eleven ILs were used to dissolve cellulose. The ILs included two ILs previously untested for this application. Monofilaments composed of three types of cellulose and carbon aerogels were prepared. Solutions of cellulose and carbon aerogels were made into electrically conducting materials. Regeneration of cellulose and composites from ILs was performed using water, ethanol, and acetone. From those antisolvents water proved to be the most effective. The solutions were made into films and fibre extrusions. The used ILs were successfully recovered and reused after regeneration of cellulose. This further strengthened the belief that dissolving cellulose with ionic liquids is a ‘green process’.

References

Al-Muhtaseb, S. A. and Ritter, J. A. 2003. Preparations and properties of resorcinol–formaldehyde organic and carbon gels. Adv. Mater., 15(2), 101–114.
http://dx.doi.org/10.1002/adma.200390020

Amaral-Labat, G., Szczurek, A., Fierro, V., Pizzi, A., Masson, E., and Celzard, A. 2012. “Blue glue” – a new precursor of carbon aerogels. Micropor. Mesopor. Mater., 158, 272–280.
http://dx.doi.org/10.1016/j.micromeso.2012.03.051

Brandt, A., Gräsvik, J., Hallett, J. P., and Welton, T. 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem., 15, 550–583.
http://dx.doi.org/10.1039/c2gc36364j

Carroll, A. and Somerville, C. 2009. Cellulosic biofuels. Annu. Rev. Plant Biol., 60, 165–182.
http://dx.doi.org/10.1146/annurev.arplant.043008.092125

Ding, Z.-D., Chi, Z., Gu, W.-X., Gu, S.-M., Liu, J.-H., and Wang, H.-J. 2012. Theoretical and experimental investigation on dissolution and regeneration of cellulose in ionic liquid. Carbohyd. Polym., 89, 1, 7–16.

Domínguez de María, P. 2013. Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, dis­tillable and bio-based ionic liquids. J. Chem. Technol. Biot., 89, 11–18.
http://dx.doi.org/10.1002/jctb.4201

ElKhatat, A. M. and Al-Muhtaseb, S. A. 2011. Advances in tailoring resorcinol–formaldehyde organic and carbon gels. Adv. Mater., 23, 2887–2903.
http://dx.doi.org/10.1002/adma.201100283

El Seoud, O. A. E., da Silva, V. C., Possidonio, S., Casarano, R., Arȇas, E. P. G., and Gimenes, P. 2011. Microwave-assisted derivatization of cellulose, 2 – The surprising effect of the structure of ionic liquids on the dis­solution and acylation of the biopolymer. Macromol. Chem. Physic., 212(23), 2541–2550.
http://dx.doi.org/10.1002/macp.201100348

Fukaya, Y., Hayashi, K., Kim, S. S., and Ohno, H. 2010. Design of polar ionic liquids to solubilize cellulose without heating. In Cellulose Solvents: For Analysis, Shaping and Chemical Modification (Liebert, T. F., Heinze, T. J., and Edgar, K. J., eds), pp. 55–66. ACS Symposium Series, Vol. 1033. Washington D.C.
http://dx.doi.org/10.1021/bk-2010-1033.ch002

Fukushima, T., Kosaka, A., Ishimura, Y., Yamamoto, T., Takigawa, T., Ishii, N., and Aida, T. 2003. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 300, 2072–2074.

Fukushima, T., Asaka, K., Kosaka, A., and Aida, T. 2005. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Edit., 44, 2410–2413.
http://dx.doi.org/10.1002/anie.200462318

Gilbert, R. D. (ed.). 1994. Cellulosic Polymers, Blends and Composites. Hanser Publications, Munich.

Gupta, K. M., Hu, Z. Q., and Jiang, J. 2013a. Molecular insight into cellulose regeneration from a cellulose/ionic liquid mixture: effects of water concentration and tem­pera­ture. RSC Adv., 3, 4425.
http://dx.doi.org/10.1039/c3ra40807h

Gupta, K. M., Hu, Z., and Jiang, J. 2013b. Cellulose regeneration from a cellulose/ionic liquid mixture: the role of anti-solvents. RSC Adv., 3, 12794–12801.
http://dx.doi.org/10.1039/c3ra40807h

Ha, S. H., Mai, N. L., An, G., and Koo, Y.-M. 2011. Micro­wave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresource Technol., 102(2), 1214–1219.
http://dx.doi.org/10.1016/j.biortech.2010.07.108

Hamedi, M. M., Hajian, A., Fall, A. B., Håkansson, K., Salajkova, M., Lundell, F., et al. 2014. Highly con­ducting, strong nanocomposites based on nano­cellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano, 8, 2467–2476.
http://dx.doi.org/10.1021/nn4060368

Hon, D. N.-S. and Shiraishi, N. (eds). 2000. Wood and Cellulosic Chemistry. CRC Press, Boca Raton.

Janesko, B. G. 2011. Modeling interactions between ligno­cellulose and ionic liquids using DFT-D. Phys. Chem. Chem. Phys., 13, 11393–11401.
http://dx.doi.org/10.1039/c1cp20072k

Jin, H., Zha, C., and Gu, L. 2007. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohyd. Res., 342, 6, 851–858.
http://dx.doi.org/10.1016/j.carres.2006.12.023

Kennedy, J. F. (ed.). 1987. Wood and Cellulosics: Industrial Utilization, Biotechnology, Structure and Properties. Ellis Horwood, Chichester.

Kennedy, J. F., Phillips, G. O., and Williams, P. A. (eds). 1990. Cellulose Sources and Exploitation: Industrial Utilisation Biotechnology and Physico-Chemical Properties. Ellis Horwood, London.

Khalil, H. P. S. A., Bhat, A. H., and Yusra, A. F. I. 2012. Green composites from sustainable cellulose nano­fibrils: a review. Carbohyd. Polym., 87, 963–979.
http://dx.doi.org/10.1016/j.carbpol.2011.08.078

Klemm, D., Heublein, B., Fink, H.-P., and Bohn, A. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Edit., 44, 3358–3393.
http://dx.doi.org/10.1002/anie.200460587

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., and Dorris, A. 2011. Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Edit., 50, 5438–5466.
http://dx.doi.org/10.1002/anie.201001273

Kosan, B., Michels, C., and Meister, F. 2008. Dissolution and forming of cellulose with ionic liquids. Cellulose, 15, 59–66.
http://dx.doi.org/10.1007/s10570-007-9160-x

Kruusamäe, K., Kaasik, F., Punning, A., and Aabloo, A. 2013. Self-sensing ionic electromechanically active actuator with patterned carbon electrodes. P. Soc. Photo-Opt. Ins., 8687, 1–8.

Lan, W., Liu, C.-F., Yue, F.-X., and Sun, R.-C. 2013. Rapid dissolution of cellulose in ionic liquid with different methods. In Cellulose Fundamental Aspects (van de Ven, T. and Godbout, L., eds), pp. 179–196. InTech, Rijeka.
http://dx.doi.org/10.5772/52517

Lavoine, N., Desloges, I., Dufresne, A., and Bras, J. 2012. Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohyd. Polym., 90, 2, 735–764.
http://dx.doi.org/10.1016/j.carbpol.2012.05.026

Liebert, T. 2010. Cellulose solvents – remarkable history, bright future. In Cellulose Solvents: For Analysis, Shaping and Chemical Modification (Liebert, T. F., Heinze, T., and Edgar, K. J., eds), pp. 3–54. ACS Symposium Series, Vol. 1033. Washington DC.

Luo, X. and Zhang, L. 2010. Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J. Chromatogr. A, 1217(38), 5922–5929.
http://dx.doi.org/10.1016/j.chroma.2010.07.026

Maldonado-Hódar, F. J. 2013. Advances in the development of nanostructured catalysts based oncarbon gels. Catal. Today, 218–219, 43–50.
http://dx.doi.org/10.1016/j.cattod.2013.06.005

Miao, C. and Hamad, W. Y. 2013. Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose., 20, 2221–2262.
http://dx.doi.org/10.1007/s10570-013-0007-3

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., and Young­blood, J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 40, 3941–3994.
http://dx.doi.org/10.1039/c0cs00108b

Nakagaito, A. N. and Yano, H. 2014. Cellulose-nanofiber-based materials. In Cellulose Based Composites: New Green Nanomaterials (Hinestroza, J. and Netravali, A. N., eds), pp. 3–26. Wiley-VCH, Weinheim.
http://dx.doi.org/10.1002/9783527649440.ch1

Néouze, M.-A., Bideau, J. L., Gaveau, P., Bellayer, S., and Vioux, A. 2006. Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chem. Mater., 18(17), 3931–3936.
http://dx.doi.org/10.1021/cm060656c

Pérez-Caballero, F., Peikolainen, A.-L., Uibu, M., Kuusik, R., Volobujeva, O., and Koel, M. 2008. Preparation of carbon aerogels from 5-methylresorcinol–formal­dehyde gels. Micropor. Mesopor. Mater., 108, 230–236.
http://dx.doi.org/10.1016/j.micromeso.2007.04.006

Pinkert, A., Marsh, K. N., Pang, S., and Staiger, M. P. 2009. Ionic liquids and their interaction with cellulose. Chem. Rev., 109(12), 6712–6728.
http://dx.doi.org/10.1021/cr9001947

Sannigrahi, P. and Ragauskas, A. J. 2013. Fundamentals of biomass pretreatment by fractionation. In Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals (Wyman, C. E., ed.), pp. 201–222. John Wiley & Sons, New Jersey.
http://dx.doi.org/10.1002/9780470975831.ch10

Sashina, E. S., Kashirskii, D. A., Janowska, G., and Zaborski, M. 2013. Thermal properties of 1-alkyl-3-methyl­pyridinium halide-based ionic liquids. Thermochim. Acta, 568, 185–188.
http://dx.doi.org/10.1016/j.tca.2013.06.022

Shi, Z., Phillips, G. O., and Yang, G. 2013. Nanocellulose electroconductive composites. Nanoscale, 5, 8, 3194–3201.
http://dx.doi.org/10.1039/c3nr00408b

Swatloski, R. P., Spear, S. K., Holbrey, J. D., and Rogers, R. D. 2002. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc., 124, 18, 4974–4975.
http://dx.doi.org/10.1021/ja025790m

Vitz, J., Erdmenger, T., and Schubert, U. S. 2010. Imidazolium based ionic liquids as solvents for cellulose chemistry. In Cellulose Solvents: For Analysis, Shaping and Chemical Modification (Liebert, T. F., Heinze, T., and Edgar, K. J., eds), pp. 299–317. ACS Symposium Series, Vol. 1033, Washington DC.
http://dx.doi.org/10.1021/bk-2010-1033.ch017

Wang, J., Zheng, Y., and Zhang, S. 2010. The application of ionic liquids in dissolution and separation of ligno­cellulose. In Clean Energy Systems and Experiences (Eguchi, K., ed.), pp. 71–84. Sciyo.
http://dx.doi.org/10.5772/10083

Wang, H., Gurau, G., and Rogers, R. D. 2012. Ionic liquid processing of cellulose. Chem. Soc. Rev., 41, 1519–1537.
http://dx.doi.org/10.1039/c2cs15311d

Weingärtner, H. 2008. Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew. Chem. Int. Edit., 47, 654–670.
http://dx.doi.org/10.1002/anie.200604951

Wu, D., Wu, B., Zhang, Y. M., and Wang, H. P. 2010. Density, viscosity, refractive index and conductivity of 1-allyl-3-methylimidazolium chloride + water mixture. J. Chem. Eng. Data, 55, 621–624.
http://dx.doi.org/10.1021/je900545v

Yamato, K., Mukai, K., Hata, K., and Asaka, K. 2012. Fast-moving bimorph actuator based on electrochemically treated millimeter-long carbon nanotube electrodes and ionic liquid gel. International Journal of Smart and Nano Materials, 3, 4, 263–274.
http://dx.doi.org/10.1080/19475411.2011.652992

Yu, L., Dean, K., and Li, L. 2009. Biodegradable polymer blends and composites from renewable resources. Prog. Polym. Sci., 31, 576–602.
http://dx.doi.org/10.1016/j.progpolymsci.2006.03.002

Zavrel, M., Bross, D., Funke, M., Büchs, J., and Spiess, A. C. 2009. High-throughput screening for ionic liquids dis­solving (ligno-)cellulose. Bioresource Technol., 100(9), 2580–2587.
http://dx.doi.org/10.1016/j.biortech.2008.11.052

Zhang, S., Li, F.-X., and Yu, J.-Y. 2011. Kinetics of cellulose regeneration from cellulose-NaOH/thiourea/urea/H2O system. Cell. Chem. Technol., 45, 593–604.

Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T., and Peters, D. 2008. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem., 10, 696–705.
http://dx.doi.org/10.1039/b801489b

Zhu, S., Wu, Y., Chen, Q., Ziniu, Y., Wang, C., Jin, S., et al. 2006. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem., 8, 325–327.
http://dx.doi.org/10.1039/b601395c

Zubizarreta, L., Arenillas, A., Domínguez, A., Menéndez, J. A., and Pis, J. J. 2007. Development of microporous carbon xerogels by controlling synthesis conditions. J. Non-Cryst. Solids, 354, 817–825.
http://dx.doi.org/10.1016/j.jnoncrysol.2007.08.015

Back to Issue