ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
On endomorphisms of groups of order 36; pp. 237–254
PDF | doi: 10.3176/proc.2016.3.06

Authors
Alar Leibak, Peeter Puusemp
Abstract

There exist exactly 14 non-isomorphic groups of order 36. In this paper we will prove that three of them are not determined by their endomorphism semigroups in the class of all groups. All groups that have an endomorphism semigroup isomorphic to the endomorphism semigroup of a group of order 36 are described.

References

  1. Alperin, J. L. Groups with finitely many automorphisms. Pacific J. Math., 1962, 12, 1–5.
http://dx.doi.org/10.2140/pjm.1962.12.1

  2. Gorenstein, D. Finite Groups. Chelsea Publishing Company, New York, 1980.

  3. Krylov, P. A., Mikhalev, A. V., and Tuganbaev, A. A. Endomorphism Rings of Abelian Groups. Kluwer Academic Publishers, Dordrecht, 2003.
http://dx.doi.org/10.1007/978-94-017-0345-1

  4. Puusemp, P. Idempotents of the endomorphism semigroups of groups. Acta Comment. Univ. Tartuensis, 1975, 366, 76–104 (in Russian).

  5. Puusemp, P. Endomorphism semigroups of generalized quaternion groups. Acta Comment. Univ. Tartuensis, 1976, 390, 84–103 (in Russian).

  6. Puusemp, P. A characterization of divisible and torsion Abelian groups by their endomorphism semigroups. Algebras, Groups Geom., 1999, 16, 183–193.

  7. Puusemp, P. Characterization of a semidirect product of groups by its endomorphism semigroup. In Proceedings of the International Conference on Semigroups, Braga, June 18–23, 1999 (Smith, P., Giraldes, E., and Martins, P., eds). World Scientific, Singapore, 2000, 161–170.
http://dx.doi.org/10.1142/9789812792310_0013

  8. Puusemp, P. Endomorphism semigroups of Schmidt groups. Algebras, Groups Geom., 2001, 18, 139–152.

  9. Puusemp, P. On the definability of a semidirect product of cyclic groups by its endomorphism semigroup. Algebras, Groups Geom., 2002, 19, 195–212.

10. Puusemp, P. Groups of order 24 and their endomorphism semigroups. Fundamental¢ naya i prikladnaya matematika, 2005, 11(3), 155–172 (in Russian).

11. Puusemp, P. A characterization of Schmidt groups by their endomorphism semigroups. Int. J. Algebr. Comput., 2005, 15(1), 161–173.
http://dx.doi.org/10.1142/S0218196705002128

12. Puusemp, P. Groups of order less than 32 and their endomorphism semigroups. J. Nonlinear Math. Phys., 2006, 13, Supplement, 93–101.
http://dx.doi.org/10.2991/jnmp.2006.13.s.11

13. Puusemp, P. and Puusemp, P. On endomorphisms of groups of order 32 with maximal subgroups C4 ´ C2 ´ C2. Proc. Estonian Acad. Sci., 2014, 63, 105–120.
http://dx.doi.org/10.3176/proc.2014.2.01

14. Puusemp, P. and Puusemp, P. On endomorphisms of groups of order 32 with maximal subgroups C8 ´ C2. Proc. Estonian Acad. Sci., 2014, 63, 355–371.
http://dx.doi.org/10.3176/proc.2014.2.01

15. Redei, L. Das “schiefe Produkt” in der Gruppentheorie mit Anwendungen auf die endlichen nichtkommutativen Gruppen mit laiter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören. Comm. Math. Helv., 1947, 20, 225–264.

16. Redei, L. Die endlichen einstufig nichtnilpotenten Gruppen. Publ. Math., 1956, 4, 303–324.

17. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.6. 2014. http://www.gap-system.org (accessed 2015-06-20)

Back to Issue