ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Structure formation and characteristics of chromium carbide–iron–titanium cermets; pp. 138–143
PDF | doi: 10.3176/proc.2016.2.09

Authors
Märt Kolnes, Jüri Pirso, Jakob Kübarsepp, Mart Viljus, Rainer Traksmaa
Abstract

Structure formation and properties of chromium carbide-based cermets with iron–titanium binder were investigated. Chromium carbide (50–70 wt%), Fe, and Ti (Fe : Ti ratio 4 : 1 as the binder phase) powders were milled in an attritor and a ball mill, compacted, and sintered at different temperatures and for different periods in vacuum. The microstructure, phase formation, and the composition of cermets were studied using XRD and EDS analysis and SEM. The results show that during the sintering of the Cr3C2–Fe–Ti composite at temperatures above 1000 °C, diffusion of chromium and carbon into the ferritic matrix and Cr3C2 recrystallization into the chromium ferrous dicarbide (Cr,Fe)23C6 and the formation of chromium solid solution in the iron matrix (Fe(Cr) take place. Titanium participates actively in the interaction process, which leads to the formation of TiC carbides even at 1200 °C. The mechanical properties (hardness, fracture toughness) and corrosion resistance in salt water were studied. Cermets sintered at lower temperature during a longer period demonstrated the best complex of mechanical properties.

References

  1. Pirso, J. and Kallas, P. Abrasive erosion of non-tungsten cemented carbides. In Proceedings of European Conference on Advances in Hard Materials Production. Stockholm, 1996, 333–338.

  2. Kayuk, V. G., Masljuk, V. A., and Yuga, A. I. Production, mechanical and tribological properties of layered composite materials based on a chromium carbide alloy. Powder Metall. Met. Ceram., 2003, 42, 31–37.
http://dx.doi.org/10.1023/A:1023990931958

  3. Pirso, J., Viljus, M., and Kübarsepp, J. Abrasive erosion of chromium carbide based cermets. In Proceedings of the 9th International Conference on Tribology. Porvoo, 2000, 959–967.

  4. Hussainova, I., Kübarsepp, J., and Pirso, J. Mechanical properties and features of cermets. Wear, 2001, 250, 818–825.
http://dx.doi.org/10.1016/S0043-1648(01)00737-2

  5. Kayuk, V. G., Masljuk, V. A., and Kostenko, A. D. Tribological properties of hard alloys based on chromium carbide. Powder Metall. Met. Ceram., 2003, 42, 257–261.
http://dx.doi.org/10.1023/A:1023990931958

  6. Letunovits, S., Viljus, M., and Pirso, J. Sliding wear of Cr3C2-Ni base cermets. Mater. Sci. (Medžiagotyra), 2002, 8(4), 477–480.

  7. Hussainova, I., Pirso, J., and Viljus, M. Processing and tribological properties of chromium carbide based cermets. In Proceedings of World Congress on Powder Metallurgy and Particulate Materials. USA, 2002, 6, 166–173.

  8. Pirso, J., Viljus, M., and Letunovits, S. Friction and wear behaviour of cemented carbides. Wear, 2004, 257, 257–265.
http://dx.doi.org/10.1016/j.wear.2003.12.014

  9. Pirso, J. and Viljus, M. Structure formation of Cr3C2-based cermets during sintering. In Proceedings of Powder Metallurgy World Congress. Kyoto, 2000, 2, 1265–1268.

10. Radomyselskii, I. D. and Klimenko, V. N. Method of producing cermet alloys. USSR patent No. 140582, 1961, 16.

11. Vlasyuk, R. Z., Gripachevskii, A. N., and Radomyselskii, I. D. Changes in the chemical and phase compositions of a Cr3C2 particle in contact with an iron matrix during sintering, Powder Metall. Met. Ceram., 1984, 23, 597–602.
http://dx.doi.org/10.1007/BF00796623

12. Yakovenko, R. V., Maslyuk, V. A., Gripachevskii, A. N., and Deimontovich, V. B. Dissolution of chromium carbide Cr3C2 in Kh17N2 steel during sintering. Powder Metall. Met. Ceram., 2011, 50, 182–188.
http://dx.doi.org/10.1007/s11106-011-9316-y

13. Maslyuk, V. A, Yakovenko, R. V., Potazhevskaya, O. A., and Bondar, A. A. Hard powder alloys and carburized chromium steels in the Cr–Fe–C system. Powder Metall. Met. Ceram., 2013, 52, 47–57.
http://dx.doi.org/10.1007/s11106-013-9494-x

14. Maslyuk, V. A., Bondar, A. A., Kuras’, V. B., Pidoprygora, M. I., and Varchenko, V. M. Structure and properties of iron–high-carbon ferrochrome powder composites. Powder Metall. Met. Ceram., 2013, 52, 291–297.
http://dx.doi.org/10.1007/s11106-013-9525-7

15. Maslyuk, V. A. Tungsten-free hardmetals and carbide steels with chromium carbides. Powder Metall. Met. Ceram., 2014, 53, 162–169.
http://dx.doi.org/10.1007/s11106-014-9599-x

16. Yakovenko, R. V., Maslyuk, V. A., Mamonova, A. A., Gripachevskii, A. N., and Denisenko, N. I. Interaction of chromium carbide with a Kh13M2 steel matrix. Powder Metall. Met. Ceram., 2014, 52, 644–650.
http://dx.doi.org/10.1007/s11106-014-9571-9

17. Evans, A. G. and Charles, E. A. Fracture toughness determinations by indentation. J. Am. Ceram. Soc., 1976, 59, 371–372.
http://dx.doi.org/10.1111/j.1151-2916.1976.tb10991.x

Back to Issue