ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Data processing and performance testing of a low-cost surface drifter design for use in coastal waters; pp. 58–67
PDF | doi: 10.3176/proc.2016.1.06

Author
Tomas Torsvik
Abstract

A surface drifter design suitable for deployment in the Gulf of Finland is presented. The drifters were designed for deployments lasting several weeks, and used a GPS/GPRS tracker unit to transmit drifter coordinates at a sampling frequency of 10–15 min. The drifter design was modified during the deployment period 2010–2014, which increased the lifetime and reliability of the track recording and reduced the direct wind drag impact, but did not significantly alter the current following performance of the drifter. A novel data quality control scheme was developed, where a time-varying reference speed derived from the data was used to identify data outliers. Compared with traditional quality control methods that use a constant reference speed limiter, the method presented here limits both the local maximum and local minimum drifter speed and is capable of identifying local extrema in relatively low drifter speed regimes.

References

  1. Davis, R. E. Lagrangian ocean studies. Annu. Rev. Fluid Mech., 1991, 23, 43–64.
http://dx.doi.org/10.1146/annurev.fl.23.010191.000355

  2. Alenius, P., Myrberg, K., and Nekrasov, A. The physical oceanography of the Gulf of Finland: a review. Boreal Environ. Res., 1998, 3, 97–125.

  3. Leppäranta, M. and Myrberg, K. Physical Oceanography of the Baltic Sea. Springer, 2009.
http://dx.doi.org/10.1007/978-3-540-79703-6

  4. Soomere, T., Myrberg, K., Leppäranta, M., and Nekrasov, A. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007. Oceanologia, 2008, 50, 287–362.

  5. Soomere, T. and Quak, E. (eds). Preventive Methods for Coastal Protection: Towards the Use of Ocean Dynamics for Pollution Control. Springer, 2013.
http://dx.doi.org/10.1007/978-3-319-00440-2

  6. Delpeche-Ellmann, N. and Soomere, T. Investigating the Marine Protected Areas most at risk of current-driven pollution in the Gulf of Finland, the Baltic Sea, using a Lagrangian transport model. Mar. Pollut. Bull., 2013, 67(1–2), 121–129.
http://dx.doi.org/10.1016/j.marpolbul.2012.11.025

  7. Viikmäe, B. and Soomere, T. Spatial pattern of current-driven hits to the nearshore from a major marine fairway in the Gulf of Finland. J. Marine Syst., 2014, 129, 106–117.
http://dx.doi.org/10.1016/j.jmarsys.2013.06.014

  8. Soomere, T., Delpeche-Ellmann, N. C., Torsvik, T., and Viikmäe, B. Towards a New Generation of Techniques for the Environmental Management of Maritime Activities, Chapter 8, pp. 103–132. NATO Science for Peace and Security Series C: Environmental Security. Springer, 2015.

  9. Lumpkin, R. and Pazos, M. Measuring surface currents with Surface Velocity Program drifters: the instrument, its data, and some recent results. In Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics (Griffa, A., Kirwan, A. D., Mariano, A. J., Ozgokmen, T., and Rossby, T., eds). Cambridge University Press, 2007, 39–67.
http://dx.doi.org/10.1017/CBO9780511535901.003

10. Kjellsson, J. and Döös, K. Surface drifters and model trajectories in the Baltic Sea. Boreal Environ. Res., 2012, 17, 447–459.

11. Andrejev, O., Myrberg, K., Alenius, P., and Lundberg, P. A. Mean circulation and water exchange in the Gulf of Finland – a study based on three-dimensional modelling. Boreal Environ. Res., 2004, 9, 1–16.

12. Davis, R. E. Drifter observations of coastal surface currents during CODE: the method and descriptive view. J. Geophys. Res., 1985, 90(C3), 4741–4755.
http://dx.doi.org/10.1029/JC090iC03p04756

13. Davis, R. E. Drifter observations of coastal surface currents during CODE: the statistical and dynamical views. J. Geophys. Res., 1985, 90(C3), 4756–4772.
http://dx.doi.org/10.1029/JC090iC03p04756

14. Ohlmann, J. C. Drifter observations of small-scale flows in the Philippine Archipelago. Oceanography, 2011, 24, 122–129.
http://dx.doi.org/10.5670/oceanog.2011.09

15. Gästgifvars, M., Lauri, H., Sarkanen, A., Myrberg, K., Andrejev, O., and Ambjörn, C. Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf S., 2006, 70(4), 567–576.
http://dx.doi.org/10.1016/j.ecss.2006.06.010

16. Lumpkin, R., Grodsky, S. A., Centurioni, L., Rio, M.-H., Carton, J. A., and Lee, D. Removing spurious low-frequency variability in drifter velocities. J. Atmos. Ocean. Tech., 2013, 30, 353–360.
http://dx.doi.org/10.1175/JTECH-D-12-00139.1

17. Soomere, T., Viidebaum, M., and Kalda, J. On dispersion properties of surface motions in the Gulf of Finland. Proc. Estonian Acad. Sci., 2011, 60, 269–279.
http://dx.doi.org/10.3176/proc.2011.4.07

18. Torsvik, T. and Kalda, J. Analysis of surface current properties in the Gulf of Finland using data from surface drifters. In Baltic International Symposium (BALTIC), 2014 IEEE/OES. Tallinn, Estonia, 2014, 1–9.
http://dx.doi.org/10.1109/baltic.2014.6887845

19. Ohlmann, J. C., White, P. F., Sybrandy, A. L., and Niiler, P. P. GPS–cellular drifter technology for coastal ocean observing systems. J. Atmos. Ocean. Tech., 2005, 22, 1381–1388.
http://dx.doi.org/10.1175/JTECH1786.1

20. Hansen, D. V. and Poulain, P. Quality control and interpolations of WOCE-TOGA drifter data. J. Atmos. Ocean. Tech., 1996, 13, 900–909.
http://dx.doi.org/10.1175/1520-0426(1996)013<0900:QCAIOW>2.0.CO;2

21. Niiler, P. P. and Paduan, J. D. Wind-driven motions in the Northeast Pacific as measured by Lagrangian drifters. J. Phys. Oceanogr., 1995, 25, 2819–2830.
http://dx.doi.org/10.1175/1520-0485(1995)025<2819:WDMITN>2.0.CO;2

22. Pazan, S. E. and Niiler, P. P. Recovery of near-surface velocity from undrogued drifters. J. Atmos. Ocean. Tech., 2001, 18, 476–489.
http://dx.doi.org/10.1175/1520-0426(2001)018<0476:RONSVF>2.0.CO;2

Back to Issue