ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Investigation of the wettability of the hydrophobic textile after mechanical treatments; pp. 118–123

Full article in PDF format | doi: 10.3176/proc.2015.1S.08

Authors
Virginija Sacevičienė, Milda Jucienė, Violeta Bieliūnienė, Vitalija Čepauskienė, Vaidotas Urbelis

Abstract

 

In this study, hydrophobic textile wettability was experimentally tested. The influence of the number of fatigue cycles and environment temperature on the wettability (water contact angle) of hydrophobic coated textile have been investigated. Two types of fatigue have been used to characterize hydrophobic surface after wearing: the flexing fatigue resistance test of the samples was carried out on bending machine IPK 2M and folding machine “Pegasil EL-15F”. The evaluation was made by measuring the contact angle after 3000, 6000, and 7500 cycles (EN ISO 7854). Surface chemical processing was carried out in four different concentrations of chemical solutions. According to experimental results the sufficient coating conditions were ascertained.

 


References

  1. Ibrahim, G. E. Designing and producing fabrics suitable for being used as waterproof raincoats. J. Am. Sci., 2011, 7, 529–544.

  2. Padleckienė, I. and Petrulis, D. Monotoring flexing fatigue damage in the coating of breathable-coated textile. Fibres Text. East. Eur., 2010, 18, 73–77.

  3. Sacevičienė, V., Strazdienė, E., Vilumsone, A., and Bal­tina, I. Analysis of multilayer materials behaviour under biaxial deformation. In Proc. 17th International Conference, Mechanika, Kaunas UT, 2012, 260–266.

  4. Wang, Ch., Li, M., Jiang, G., Fang, K., and Tian, A. Sur­face modification with silicon sol on cotton fabrics for water-repellent finishing. Res. J. Textile and Apparel, 2007, 5, 27–34.

  5. Shi, Z., Wyman, I., Liu, G., Hu, H., and Hu, J. Preparation of water-repellent cotton fabrics from fluorinated diblock copolymers and evaluation of their durability. Polymer, 2013, 54, 6406–6414.
http://dx.doi.org/10.1016/j.polymer.2013.09.043

  6. Quagliarini, E., Bondioli, F., Goffredo, G. B., and Licciulli, A. Self-cleaning materials on architectural heritage: compatibility of photo-induced hydro­philicity of TiO2 coatings on stone surfaces. J. Cult. Herit., 2013, 14, 1–7 (online).
http://dx.doi.org/10.1016/j.culher.2012.02.006

  7. Tan, K., Li, C., Meng, H., and Wang, Z. Preparation and characterization of thermoplastic elastomer of poly(vinyl chloride) and chlorinated waste rubber. Polym. Test., 2009, 28, 2–7.
http://dx.doi.org/10.1016/j.polymertesting.2008.08.003

  8. Borisova, A. and Reihmane, S. Hydrophopic treatment of blended fabric’s surface. Mater. Sci. (Medžia­go­tyra), 2013, 19(1), 169–173.

  9. Reihmane, S. & Baltina, I. The water repellent finishes for cellulosic textiles. Mater. Sci. Appl. Chem., 2008, 16, 18–24.

10. Twardowski, A., Makowski, P., Małachovski, A., Hry­nyk, R., Pietrowski, P., and Tyczkowski, J. Plasma treatment of thermoactive membrane textiles for superhydrophobicity. Mater. Sci. (Medžia­gotyra), 2012, 18(2), 163–166.

11. Caschera, D., Mezzi, A., Cerri, L., Caro, T., Riccucci, C., Ingo, G. M., Padeletti, G., Biasiucci, M., Gigli, G., and Cortese, B. Effects of plazma treatments for improving extreme wettability behaviour of cotton fabrics. Cellulose, 2014, 21, 741–756.
http://dx.doi.org/10.1007/s10570-013-0123-0

12. Deng, B., Cai, R., Yu, Y., Jiang, H., Wang, C., Li, J., Li, L., Yu, M., Li, J., Xie, L., Huang, Q., Fan, C. Laundering durability of superhydrophobic cotton fabric. Adv. Mater., 2010, 22, 5473–5477.
http://dx.doi.org/10.1002/adma.201002614

13. Lee, H. J. and Michielsen, S. Lotus effect: super­hydro­phobicity. Technical note. J. Textile Inst., 2006, 97, 455–462.
http://dx.doi.org/10.1533/joti.2006.0271

14. Latthe, S. S., Gurav, A. B., Maruti, C. S., and Vhat­kar, R. S. Recent progress in preperation of super­hydro­phobic surfaces: a review. J. Surf. Eng. Mater. Adv. Technol., 2012, 2, 76–94.

15. Zsidai, L., De Baets, P., Samyn, P., Galacka, G., Van Peteghem, A. P., and Van Parys, F. The tribological behaviour of engineering plastics during sliding friction investigated with small-scale specimens. Wear, 2002, 253, 673–688.
http://dx.doi.org/10.1016/S0043-1648(02)00149-7

16. Su, C. and Li, J. The friction poperty of super-hydrophobic cotton textiles. Appl. Surf. Sci., 2010, 256, 4220–4225.
http://dx.doi.org/10.1016/j.apsusc.2010.02.006

17. Ivanova, N. A. and Zaretskaya, A. K. Simple treatment of cotton textile to impart high water repellent properties. Appl. Surf. Sci., 2010, 257, 1800–1803.
http://dx.doi.org/10.1016/j.apsusc.2010.09.021

18. Vihodceva, S. and Kukle, S. Thin coatings on the raw cotton textile deposited by the sol-gel method. Mater. Sci. Textile and Clothing Technol., 2012, 7, 69–73.

19. Milašienė, D. and Bubnytė, K. The influence of fatique conditions on the mechanical properties of laminated leather and its separate layers. Mater. Sci. (Medžia­gotyra), 2007, 13(3), 210–213.

20. Padleckienė, I., Petrulis, D., Rubežienė, V., Valienė, V., and Abraitienė, A. Breathability and resistance to water penetration of breathable-coated textiles after cyclic mechanical treatments. Mater. Sci. (Medžia­gotyra), 2009, 15(1), 69–74.

21. Erasmus, E. and Barkhuysen, F. A. Superhydrophobic cotton by fluorosilane modification. Indian J. Fibre Text., 2009, 34, 377–379.

22. Milašienė, D. Effects of environment temperature on fatigue properties of laminated leather. Mechanika, (Kaunas UT), 2007, 68, 45–48.

 


Back to Issue