ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Spectral asymmetry index and Higuchi’s fractal dimension for detecting microwave radiation effect on electroencephalographic signal; pp. 322–327
PDF | doi: 10.3176/proc.2014.3.05

Authors
Maie Bachmann, Jaanus Lass, Anna Suhhova, Hiie Hinrikus
Abstract

This study is aimed to the comparison of the sensitivity of linear spectral asymmetry index (SASI) and nonlinear Higuchi’s fractal dimension (HFD) methods for detecting modulated microwave effect on human electroencephalographic (EEG) signal at non-thermal level of exposure. The experiments were carried out on a group of 14 healthy volunteers exposed to 450 MHz microwave radiation modulated at 40 Hz frequency. The applied microwave power was 1 W and the field power density near the head was 0.16 mW/cm2. The EEG signal was recorded from 8 channels: frontal – FP1, FP2; temporal – T3, T4; parietal – P3, P4; and occipital – O1, O2; with the common recording reference Cz. Microwave exposure increased the group averaged SASI value about 64%. However, the alteration was not statistically significant (p = 0.2). The HFD method detected small (about 1.7%) but statistically significant (p = 0.008) enhancement of its value with microwave exposure.

References

  1. Buzsáki, G. and Draguhn, A. Neuronal oscillations in cortical networks. Science, 2004, 304, 1926–1929.
http://dx.doi.org/10.1126/science.1099745

  2. Schnitzler, A. and Gross, J. Normal and pathological oscillatory communication in the brain. Nature Rev. Neurosci., 2005, 6, 285–296.
http://dx.doi.org/10.1038/nrn1650

  3. Nunez, P. L. Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York, 1995.

  4. Steriade, M. and Timofeev, I. Neuronal plasticity in thalamo­cortical networks during sleep and waking oscillations. Neuron, 2003, 37, 563–576.
http://dx.doi.org/10.1016/S0896-6273(03)00065-5

  5. Hutcheon, B. and Yarom, Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci., 2000, 23, 216–222.
http://dx.doi.org/10.1016/S0166-2236(00)01547-2

  6. Hinrikus, H., Bachmann, M., Lass, J., Suhhova, A., Tuu­lik, V., Aadamsoo, K., and Võhma, Ü. Method and device for diagnosing a mental disorder by measuring bioelectromagnetic signals of the brain. US8244341B1 from Aug. 14, 2012.

  7. Hinrikus, H., Suhhova, A., Bachmann, M., Aadamsoo, K., Võhma, Ü., Lass, J., and Tuulik, V. Electroencephalo­graphic spectral asymmetry index for detection of depression. Med. Biol. Eng. Comput., 2009, 47, 1291–1299.
http://dx.doi.org/10.1007/s11517-009-0554-9

  8. Cook, C. M., Saucier, D. M., Thomas, A. W., and Prato, F. S. Exposure to ELF magnetic and ELF-modulated radiofrequency fields: the time course of physiological and cognitive effects observed in recent studies (2001–2005). Bioelectromagnetics, 2006, 27, 613–627.
http://dx.doi.org/10.1002/bem.20247

  9. Valentini, E., Curcio, G., Moroni, F., Ferrara, M., De Gennaro, L., and Bertini, M. Neurophysiological effects of mobile phone electromagnetic fields on humans: a comprehensive review. Bioelectro­magnetics, 2007, 28, 415–432.
http://dx.doi.org/10.1002/bem.20323

10. Juutilainen, J., Höytö, A., Kumlin, T., and Naarala, J. Review of possible modulation-dependent biological effects of radiofrequency fields. Bioelectromagnetics, 2011, 32, 511–534.
http://dx.doi.org/10.1002/bem.20652

11. Huber, R., Treyer, V., Borbely, A. A., Schuderer, J., Gottselig, J. M., Landolt, H. P. et al. Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG. J. Sleep Res., 2002, 11, 289–295.
http://dx.doi.org/10.1046/j.1365-2869.2002.00314.x

12. Huber, R., Treyer, V., Schuderer, J., Berthold, T., Buck, A., Kuster, N. et al. Radiation to pulse-modulated radio frequency electromagnetic fields affects regional cerebral blood flow. Eur. J. Neurosci., 2005, 21, 1000–1006.
http://dx.doi.org/10.1111/j.1460-9568.2005.03929.x

13. Hinrikus, H., Bachmann, M., Lass, J., Tomson, R., and Tuulik, V. Effect of 7, 14 and 21 Hz modulated 450 MHz microwave radiation on human electro­encephalographic rhythms. Int. J. Radiat. Biol., 2008, 84, 69–79.
http://dx.doi.org/10.1080/09553000701691679

14. Hinrikus, H., Bachmann, M., and Lass, J. Parametric mechanism of excitation of the electroencephalo­graphic rhythms by modulated microwave radiation. Int. J. Radiat. Biol., 2011, 87, 1077–1085.
http://dx.doi.org/10.3109/09553002.2011.620063

15. Bachmann, M., Kalda, J., Lass, J., Tuulik, V., Säkki, M., and Hinrikus, H. Non-linear analysis of the electro­encephalogram for detecting effects of low-level electro­magnetic fields. Med. Biol. Eng. Comput., 2005, 43, 142–148.
http://dx.doi.org/10.1007/BF02345136

16. Hinrikus, H., Bachmann, M., Kalda, J., Sakki, M., Lass, J., and Tomson, R. Methods of electroencephalographic signal analysis for detection of small hidden changes. Nonlinear Biomed. Phys., 2007, 1:9, 28 July 2007.

17. Hinrikus, H., Bachmann, M., Karai, D., Klonowski, W., Lass, J., Stepien, P. et al. Higuchi’s fractal dimension for analysis of the effect of external periodic stressor on electrical oscillations in the brain. Med. Biol. Eng. Comput., 2011, 49, 585–591.
http://dx.doi.org/10.1007/s11517-011-0768-5

18. Hinrikus, H., Bachmann, M., Lass, J., Karai, D., and Tuu­lik, V. Effect of low frequency modulated micro­wave radiation on human EEG: individual sensitivity. Bio­electromagnetics, 2008, 29, 527–538.
http://dx.doi.org/10.1002/bem.20415

19. Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Physica D, 1988, 31, 277–283.
http://dx.doi.org/10.1016/0167-2789(88)90081-4

20. Hinrikus, H., Bachmann, M., Lass, J., and Tuulik, V. Effect of modulated microwave radiation on electro­encephalographic rhythms and cognitive processes. Estonian J. Engng, 2008, 14, 91–106.
http://dx.doi.org/10.3176/eng.2008.2.01

Back to Issue