ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Relationship between mechanical properties of bilayer textile systems and their components; pp. 150–159
PDF | doi: 10.3176/proc.2012.3.02

Authors
Kristina Ancutiene, Eugenija Strazdienė, Laima Papreckiene
Abstract

The goal of this research was to define the relationship between the mechanical properties of fused bilayer textile systems and their constituent layers, i.e. fabrics and fusible interlinings. The objects of investigation were four samples of broken twill outer fabric different in thickness (1.01–2.28 mm) and mass per square metre (222–398 g/m2), and two types of fusible interlinings: nonvowen with longitudinal threads and warp knitted. Fused bilayer textile systems were created by changing the orientation of the fusible interlining by 0°, 45°, and 90° in respect to the outer fabric’s warp direction. Mechanical properties (tensile, shear, bending, and surface properties) of fused textile systems and their components were determined using KES-F automated testing devices. The relationships z = z(xy) between fused textile systems’ mechanical parameters (z) and parameters of the outer fabrics (x), as well as parameters of fusible interlinings (y) in 0°, 45°, and 90° orientations were defined. The obtained theoretical relationships were confirmed experimentally by finding proper mechanical properties of fusible interlinings (y) on the basis of which bilayer textile systems with mechanical properties (z) falling into the allowable value range of the KES-F quality chart could be composed. Selection of compatible components for fused textile systems with certain mechanical parameters allows avoiding problems in garment manufacturing processes and predicting the appearance and quality of the final textile product.

References

  1. Jevšnik, S. and Geršak, J. Objective evaluation and prediction of properties of a fused panel. Int. J. Clothing Sci. Technol., 1998, 10(3/4), 252–262.
http://dx.doi.org/10.1108/09556229810693645

  2. Fan, J., Leeuwner, W., and Hunter, L. Compatibility of outer and fusible interlining fabrics in tailored garments. Part III. Selecting fusible interlinings. Textile Res. J., 1997, 67(4), 258–262.

  3. Jevšnik, S., Geršak, J., and Gubenšek, I. The advance engineering methods to plan the behaviour of fused panel. Int. J. Clothing Sci. Technol., 2005, 17(3/4), 161–170.
http://dx.doi.org/10.1108/09556220510590858

  4. Shishoo, R., Klevmar, P. H., Cednas, M., and Olofsson, B. Multilayer textile structures. Relationship between the properties of a textile composite and its components. Textile Res. J., August 1971, 669–679.

  5. Fan, J., Leeuwner, W., and Hunter, L. Compatibility of outer and fusible interlining fabrics in tailored garments. Part I. Desirable range of mechanical properties of fused composites. Textile Res. J., 1997, 67(2), 137–142.

  6. Fan, J., Leeuwner, W., and Hunter, L. Compatibility of outer and fusible interlining fabrics in tailored garments. Part II. Relationship between mechanical properties of fused composites and those of outer and fusible interlining fabrics. Textile Res. J., 1997, 67(3), 194–197.

  7. Jevšnik, S. and Geršak, J. Use of a knowledge base for studying the correlation between the constructional parameters of fabrics and properties of a fused panel. Int. J. Clothing Sci. Technol., 2001, 13(3/4), 186–197.
http://dx.doi.org/10.1108/EUM0000000005781

  8. Pavlinič, D. Z. and Geršak, J. Design of the system for prediction of fabric behaviour in garment manu­factur­ing processes. Int. J. Clothing Sci. Technol., 2004, 16(1/2), 252–261.
http://dx.doi.org/10.1108/09556220410520522

  9. Kim, K., Inui, S., and Takatera, M. Verification of predic­tion for bending rigidity of woven fabric laminated with interlining by adhesive bonding. Textile Res. J., 2011, 81(6), 598–607.
http://dx.doi.org/10.1177/0040517510387212

10. Ancutienė, K., Strazdienė, E., and Nesterova, A. The rela­tion­ship between fabrics bending rigidity parameters defined by KES-F and FAST equipment. Materials Science = Medžiagotyra, 2010, 16(4), 346–352.

11. Jeong, S. H. and Kim, H. Selecting optimal interlinings with a neural network. Textile Res. J., 2000, 70(11), 1005–1010.
http://dx.doi.org/10.1177/004051750007001111

12. Lai, S. S. Optimal combinations of face and fusible interlining fabrics. Int. J. Clothing Sci. Technol., 2001, 13(5), 322–338.
http://dx.doi.org/10.1108/09556220110405073

13. Jevšnik, S. and Geršak, J. Modelling the fused panel for a numerical simulation of drape. Fibres & Textiles in Eastern Europe, 2004, 12(1), 47–52.

14. Dapkūnienė, K. and Strazdienė, E. Influence of layer orienta­tion upon textile systems tensile properties. Part 1. Investigation of tensile strain and resilience. Materials Science = Medžiagotyra, 2006, 12(1), 73–78.

15. Dapkūnienė, K. and Strazdienė, E. Influence of layer orientation upon textile systems tensile properties. Part 2. Investigation of tensile energy and linearity. Materials Science = Medžiagotyra, 2006, 12(3), 247–252.

16. Dapkūnienė, K., Strazdienė, E., Koldinska, M., and Fleg­lova, Z. Influence of layer orientation upon textile system’s shear properties. In Fibre-Grade Polymers, Chemical Fibres, and Special Textiles: 4th Central European Conference: Book of Papers. 2005, 1–7.

17. Kawabata, S. The Standardization and Analysis of Hand Evaluation. Second Edition. The Hand Evaluation and Standardization Committee, 1980.

18. Kawabata, S., Niwa, M., and Yamashita, Y. A Guide line for manufacturing “ideal fabrics”. Int. J. Clothing Sci. Technol., 1999, 11(2/3), 134–140.
http://dx.doi.org/10.1108/09556229910276296

19. Kawabata, S. and Niwa, M. Fabric performance in clothing and clothing manufacture. J. Textile Inst., 1989, 80(1), 19–51.
http://dx.doi.org/10.1080/00405008908659184

20. Kawabata, S. and Niwa, M. Clothing engineering based on objective measurement technology. Int. J. Clothing Sci. Technol., 1998, 10(3/4), 263–272.
http://dx.doi.org/10.1108/09556229810693636

21. Pavlinič, D. Z. and Geršak, J. Investigations of the relation between fabric mechanical properties and behavior. Int. J. Clothing Sci. Technol., 2003, 15(3/4), 231–240.
http://dx.doi.org/10.1108/09556220310478332

Back to Issue