ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Styrene–acrylate/carbon nanotube nanocomposites: mechanical, thermal, and electrical properties; pp. 172–177
PDF | doi: 10.3176/proc.2012.3.05

Authors
Juris Bitenieks, Remo Merijs Meri, Janis Zicans, Roberts Maksimovs, Cornelia Vasile, Valentina Elena Musteata
Abstract

Styrene–acrylonitrile copolymer (SAN) and multi-walled carbon nanotube (CNT) nanocomposites were prepared by solution casting from aqueous solution. The composites were prepared with different CNT concentrations. CNTs significantly affected mechanical properties of the obtained materials. The elastic modulus and ultimate strength of the composite films were improved though ultimate elongation reduced by increasing the CNT content. Apart from studying stress–strain characteristics, some calorimetric investigations were carried out to explain the specific deformation behaviour from the structure viewpoint. Dielectric measurements indicated an increase in AC conductivity and dielectric permittivity already at a small CNT addition.

References

  1. Maciej, O. Carbon nanotube composites – mechanical, electrical, and optical properties. Dissertation zur Erlan­gung des Doktorgrades (Dr. rer. nat.). Bonn, 2006.

  2. Chen, W., Tao, X., Xue, P., and Cheng, X. Enhanced mechanical properties and morphological charac­teriza­tions of poly(vinyl alcohol)–carbon nanotube com­posite films. Appl. Surf. Sci., 2005, 252, 1404–1409.
http://dx.doi.org/10.1016/j.apsusc.2005.02.138

  3. Tang, C., Zhou, T., Yang, J., Zhang, Q., Chen, F., Fu, Q., and Yang, L. Wet-grinding assisted ultrasonic dis­persion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids Surf. B, 2011, 86, 189–197.
http://dx.doi.org/10.1016/j.colsurfb.2011.03.041

  4. Maa, P. C., Siddiqui, N. A., Marom, G., and Kim, J. K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites: Part A, 2010, 41, 1345–1367.
http://dx.doi.org/10.1016/j.compositesa.2010.07.003

  5. Bauhofer, W. and Kovacs, J. Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol., 2009, 69,1486–1498.
http://dx.doi.org/10.1016/j.compscitech.2008.06.018

  6. Morcom, M., Atkinson, K., and Simon, G. P. The effect of carbon nanotube properties on the degree of dispersion and reinforcement of high density polyethylene. Polymer, 2010, 51, 3540–3550.
http://dx.doi.org/10.1016/j.polymer.2010.04.053

  7. Wang, M., Pramoda, K. P., and Goh, S. H. Enhancement of the mechanical properties of poly(styrene-co-acrylonitrile) with poly(methyl methacrylate)-grafted multiwalled carbon nanotubes. Polymer, 2005, 46, 11510–11516.
http://dx.doi.org/10.1016/j.polymer.2005.10.007

  8. Zhao, C., Hu, G., Justice, R., Schaefer, D. W., Zhang, S., Yang, M., and Han, C. C. Synthesis and charac­teriza­tion of multi-walled carbon nanotubes reinforced polyamide 6 via in situ polymerization. Polymer, 2005, 46, 5125–5132.
http://dx.doi.org/10.1016/j.polymer.2005.04.065

  9. Coleman, J. N., Khan, U., Blau, W. J., and Gun¢ko, Y. K. Small but strong: a review of the mechanical pro­perties of carbon nanotube–polymer composites. Carbon, 2006, 44, 1624–1652.
http://dx.doi.org/10.1016/j.carbon.2006.02.038

10. Regev, O., El Kati, P. N. B., Loos, J., and Koning, C. E. Preparation of conductive nanotube–polymer com­posites using latex technology. Adv. Mater., 2004, 16, 248.
http://dx.doi.org/10.1002/adma.200305728

11. Wu, T. M. and Chen, E. C. Preparation and characteriza­tion of conductive carbon nanotube–polystyrene nanocomposites using latex technology. Compos. Sci. Technol., 2008, 68, 2254–2259.
http://dx.doi.org/10.1016/j.compscitech.2008.04.010

12. Zhaoxia, J., Pramoda, K. P., Guoqin, X., and Suat, H. G. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl metha­crylate) composites. Chem. Phys. Lett., 2001, 337, 43–47.
http://dx.doi.org/10.1016/S0009-2614(01)00186-5

13. Shi, J. H., Yang, B. X., and Goh, S. H. Covalent func­tionalization of multiwalled carbon nanotubes with poly(styrene-co-acrylonitrile) by reactive melt blending. Eur. Polym. J., 2009, 45, 1002–1008.
http://dx.doi.org/10.1016/j.eurpolymj.2008.12.040

14. Spitalskya, Z., Tasisb, D., Papagelisb, K., and Galiotis, C. Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progr. Polym. Sci., 2010, 35, 357–401.
http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003

15. Bartholome, C., Miaudet, P., Derré, A., Maugey, M., Roubeau, O., Zakri, C., and Poulin, P. Influence of surface functionalization on the thermal and electrical properties of nanotube–PVA composites. Compos. Sci. Technol., 2008, 68, 2568–2573.
http://dx.doi.org/10.1016/j.compscitech.2008.05.021

16. Manchado, M. A. L., Valentini, L., Biagiotti, J., and Kenny, J. M. Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene com­posites prepared by melt processing. Carbon, 2005, 43, 1499–1505.
http://dx.doi.org/10.1016/j.carbon.2005.01.031

17. Chen, L., Pang, X. J., and Yu, Z. L. Study on poly­carbonate/multi-walled carbon nanotubes composite produced by melt processing. Mat. Sci. Eng., A, 2007, 457, 287–291.
http://dx.doi.org/10.1016/j.msea.2007.01.107

18. Bin, Y., Mine, M., Koganemaru, A., Jiang, X., and Matsuo, M. Morphology and mechanical and electrical properties of oriented PVA–VGCF and PVA–MWNT composites. Polymer, 2006, 47, 1308–1317.
http://dx.doi.org/10.1016/j.polymer.2005.12.032

19. Fritzsche, J., Lorenz, H., and Klüppel, M. CNT based elastomer-hybrid-nanocomposites with promising mechanical and electrical properties. Macromol. Mater. Eng., 2009, 294, 551–560.
http://dx.doi.org/10.1002/mame.200900131

20. Tapas, K., Saswata, B., Partha, K., Nam, H. K., Kyong, Y. R., and Joong, H. L. Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Composites: Part A, 2011, 42, 1856–1861.
http://dx.doi.org/10.1016/j.compositesa.2011.08.014

21. Rajendra, A. K. and Jyoti, P. J. Copolyester nano­composites based on carbon nanotubes: reinforcement effect of carbon nanotubes on viscoelastic and dielectric properties of nanocomposites. Polym. Int., 2008, 57, 114–123.
http://dx.doi.org/10.1002/pi.2325

22. Panwar, V. and Mehra, R. M. Study of electrical and dielectric properties of styrene–acrylonitrile/graphite sheets composites. Eur. Polym. J., 2008, 44, 2367–2375.
http://dx.doi.org/10.1016/j.eurpolymj.2008.05.005

Back to Issue