ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Barrier and sorption properties of porous poly(vinyl alcohol)–cellulose fibre composites; pp. 178–184
PDF | doi: 10.3176/proc.2012.3.06

Authors
Dace Cerpakovska, Martins Kalnins
Abstract

Various composites were prepared by impregnation of cellulose fibre nonwovens (CFNs) with poly(vinyl alcohol) using two methods. The composites obtained contained up to 0.4 volume fraction of polymer, and the volume fraction of voids was not less than 0.3. Scanning electron microscope images show no great changes in CFN frame structure compared to untreated CFN. Air and water vapour permeability decreases with growth of the volume fraction of polymer as a result of filling of the voids and formation of closed voids. As determined by sorption characteristics, the composite and its base absorb water vapour differently from CFNs. Biodegradation of samples in soil was inspected. Test data show a faster degradation for samples with a small polymer amount, where less than 10% of initial weight is left after two weeks exposure in soil.

References

  1. Raj, B., Sankar, K. U., and Siddaramaiah. Low density poly­ethylene/starch blend films for food packaging applications. Adv. Polym. Tech., 2004, 23, 32–45.
http://dx.doi.org/10.1002/adv.10068

  2. Ozaki, S. K., Monteiro, M. B. B., Yano, H., Imamura, Y., and Souza, M. F. Biodegradable composites from waste wood and poly(vinyl alcohol). Polym. Degrad. Stabil., 2005, 87, 293–299.
http://dx.doi.org/10.1016/j.polymdegradstab.2004.08.011

  3. Rhim, J. W., Lee, J. H., and Hong, S. I. Increase in water resistance of paperboard by coating with poly(lactide). Packag. Technol. Sci., 2007, 20, 393–402.
http://dx.doi.org/10.1002/pts.767

  4. Solaro, R., Corti, A., and Chiellini, E. Biodegradation of poly(vinyl alcohol) with different molecular weights and degree of hydrolysis. Polym. Adv. Technol., 2000, 11, 873–878.
http://dx.doi.org/10.1002/1099-1581(200008/12)11:8/12<873::AID-PAT35>3.3.CO;2-M

  5. Guohua, Z., Ya, L., Cuilan, F., Min, Z., Caiqiong, Z., and Zongdao, C. Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly(vinyl alcohol) blend film. Polym. Degrad. Stabil., 2006, 91, 703–711.
http://dx.doi.org/10.1016/j.polymdegradstab.2005.06.008

  6. Su, J. F., Yuan, X. Y., Huang, Z., and Xia, W. L. Properties stability and biodegradation behaviors of soy protein isolate/poly(vinyl alcohol) blend films. Polym. Degrad. Stabil., 2010, 95, 1226–1237.
http://dx.doi.org/10.1016/j.polymdegradstab.2010.03.035

  7. Gastaldi, E., Chalier, P., Guillemin, A., and Gontard, N. Microstructure of protein-coated paper as affected by physico-chemical properties of coating solutions. Colloid. Surface. A., 2007, 301, 301–310.
http://dx.doi.org/10.1016/j.colsurfa.2006.12.079

  8. Sorensen, G. and Risbo, J. Characterization of moulded-fibre packaging with respect to water vapour sorption and permeation at different combinations of internal and external humidity. Packag. Technol. Sci., 2005, 18, 59–69.
http://dx.doi.org/10.1002/pts.673

  9. Cerpakovska, D., Kalnins, M., Tupureina, V., and Dzene, A. Biodegradable paper reinforced poly(vinyl alcohol) composites for packaging. Sci. J. Riga Techn. Univ., 2010, 21, 26–34.

10. Cerpakovska, D. and Kalnins, M. Composites based on cellulose fiber nonwovens and a water soluble polymer 1. Structure and strength-deformation charac­teristics of cellulose fiber nonwovens and structural characteristics of the composites. Mech. Compos. Mater., 2011, 48, 115–122.
http://dx.doi.org/10.1007/s11029-012-9257-7

11. Cerpakovska, D. and Kalnins, M. Composites based on cellulose fiber nonwovens and a water soluble polymer 2. Strength-deformation characteristics of composites. Mech. Compos. Mater. (in print).

12. Cerpakovska, D., Kalnins, M., Tupureina, V., and Dzene, A. Characterization of various kinds of paper as rein­force­ment for biodegradable polymer composite. Proc. Estonian Acad. Sci., 2009, 58, 40–44.
http://dx.doi.org/10.3176/proc.2009.1.07

13. European Standard EN ISO 9237, 1995. Textiles – Determination of permeability of fabrics to air, European Committee for Standardization, Brussels, Belgium.

14. ASTM Standard  E 96, 2000. Standard Test Methods for Water Vapor Transmission of Materials, ASTM International, West Conshohocken, PA, USA.

15. ASTM Standard D 3201, 2003. Standard Test Method for Hygroscopic Properties of Fire Retardant Wood and Wood Based Products, ASTM International, West Conshohocken, PA, USA.

Back to Issue