ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Image-based method for the investigation of low flexure rigidity materials; pp. 185–192
PDF | doi: 10.3176/proc.2012.3.07

Authors
Jovita Dargienė, Dalia Lukšaitė, Jurgita Domskienė
Abstract

The image analysis method is used for the evaluation of the mechanical behaviour of bias stretched woven material and determination of the zones and values of local deformations of the specimen. To demonstrate the capabilities and reliability of the proposed image analysis method, the simplest and most commonly used uniaxial tensile test was chosen. Using the acquired images, local deformations of the specimen in transverse and longitudinal directions were estimated and regularities of the variation of uniform deformation zones were assessed.
Comparison of the behaviour of materials shows that increase in bending rigidity changes the deformation character of materials. For non-laminated low flexure rigidity materials the formation of localized deformation zones was estimated at primary stages of deformation, as in the case of stiffer laminated fabric the zones of uniform deformations spread more and do not concentrate within the centre of the specimen. The different nature and shape of local deformation zones indicate that the behaviour of laminated materials is closer to that of isotopic materials.
The obtained results show that image analysis can describe the response of low flexure rigidity material to external forces. This method supplements the investigation process of woven materials, increases the accuracy of measurements, and determines the real-time local strains.

References

  1. Barrientos, B., Martinez, R. A., Celorio, L. M., Lopez, J., and Cywiak, M. D. Measurement of out-of-plane deformation by combination of speckle photography and speckle shearing interferometry. Int. J. Light Electron Opt., 2004, 115, 248–252.
http://dx.doi.org/10.1078/0030-4026-00362

  2. Arial, Y., Shimamura, R., and Yokozeki, S. Dynamic out-of-plane deformation measurement using virtual speckle patterns. Opt. Laser Eng., 2009, 47, 563–569.
http://dx.doi.org/10.1016/j.optlaseng.2008.10.010

  3. Hale, R. D. An experimental investigation into strain dis­tribution in 2D and 3D textile composites. Compos. Sci. Technol., 2003, 63(15), 2171–2185.
http://dx.doi.org/10.1016/S0266-3538(03)00173-8

  4. Domskiene, J., Strazdiene, E., and Bekampiene, P. Develop­ment and optimisation of image analysis technique for fabric buckling evaluation. Int. J. Cloth. Sci. Tech., 2011, 23(5), 329–340.
http://dx.doi.org/10.1108/09556221111166266

  5. Abrill, H. C., Millan, M. S., and Valencia, E. Influence of the wrinkle perception with distance in the objective evaluation of fabric smoothness. Opt. A-Pure. Appl. Op., 2008, 10(10), 1–10.

  6. Zhu, B., Yu, T. X., and Tao, X. M. Large deformation and slippage mechanism of plain woven composite in bias extension. Compos. Part. A-Appl. S., 2007, 38, 1821–1828.

  7. Vang, X., Georganas, D. N., and Petriu, E. M. Automatic woven fabric structure identification by using principal component analysis and fuzzy clustering. In Proceedings of the I2MTC – IEEE Instrumentation and Measurement Technology Conference, 2010, 590–595.

  8. Xin, B. and Hu, J. An image based method for charac­terising the mechanical behaviours of fabrics. Part I: the measurement of in-plane tensile behaviour. Fibres. Text. East. Eur., 2008, 1, 72–75.

  9. Pan, B., Qian, K., Xie, H., and Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol., 2009, 20, 1–17.
http://dx.doi.org/10.1088/0957-0233/20/6/062001

10. Lee, W., Padvoiskis, J., and Cao, E. Bias-extension of woven composite fabrics. Int. J. Mater. Forming., 2008, 1, 895–898.
http://dx.doi.org/10.1007/s12289-008-0240-8

11. Tores Arellano, M., Crouzeix, L., Douchin, B., and Collombet, F. Strain field measurement of filament-wound composites at ± 55 using digital image correlation: an approach for unit cells employing flat specimens. Compos. Struct., 2010, 92, 2457–2464.
http://dx.doi.org/10.1016/j.compstruct.2010.02.014

12. Behera, B. K. Image-Processing in Textiles. The Textile Institute, Textile Progress, 2004.

13. Bekampienė, P. and Domskienė, J. Analysis of fabric specimen aspect ratio and deformation mechanism during bias tension. Mater. Sci., 2009, 15, 167–172.

14. Jauffrès, D., Morris, C. D., Sherwood, J. A., and Chen, J. Simulation of the thermo stamping of woven composites determination of the tensile and in-plane shearing behaviours. Int. J. Mater. Forming, 2009, 1(2), 161–164.

15. Ahmet, H., Aydilek, G. M., and Tuncer, B. E. Use of image analysis in determination of strain distribution during geosynthetic tensile testing. J. Comput. Civil. Eng., 2004, 18(1), 65–74.
http://dx.doi.org/10.1061/(ASCE)0887-3801(2004)18:1(65)

Back to Issue