ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Influence of cellulose content on thermal properties of poly(lactic) acid/cellulose and low-density polyethylene/cellulose composites; pp. 237–244
PDF | doi: 10.3176/proc.2012.3.14

Authors
Dmitri Šumigin, Elvira Tarasova, Andres Krumme, Anti Viikna
Abstract

Crystallization behaviour of polylactic acid/cellulose (PLA/CELL) and linear low-density polyethylene/cellulose (LDPE/CELL) composites was studied by differential scanning calorimetry (DSC) and polarized light microscopy equipped with hot-stage. The effect of addition of cellulose on thermal properties of PLA/CELL and LDPE/CELL composites was considered. The DSC experiments were performed at different scanning rates.
     For pure PLA the crystallization peak at T = 98.8 °C was observed in DSC scans at 20 °C/min with the corresponding melting peak at 110.1 °C. With addition of cellulose no crystallization peaks and melting peaks related to them were found. For all samples cold crystallization peaks at around 130 °C and corresponding melting peaks at 152–153 °C were observed in endotherms. Cold crystallinity is strongly affected by cellulose content: the higher the cellulose content, the higher is the cold crystallinity of the samples. At the same time overall crystallinity for all PLA/cellulose composites is negligible contrary to pure PLA, which is slightly crystalline.
     Unlike PLA, LDPE and its composites have no cold crystallization, which is a usual behaviour for LDPE materials. A general crystallization/melting behaviour of LDPE/cellulose composites is identical to that of pure LDPE. However, the crystallinity of LDPE/composites decreases with increasing cellulose content.

References

  1. Auras, R., Lim, L., Selke, S., and Tsuji, H. POLY(LACTIC ACID): Synthesis, Structures, Properties, Processing, and Applications (Grossman, R. F. and Nwabunma, D., eds). John Wiley & Sons, Hoboken, New Jersey, 2010.
http://dx.doi.org/10.1002/9780470649848

  2. Liao, R., Yang, B., Yu, W., and Zhou, C. Isothermal cold crystallization kinetics of polylactide/nucleating agents. J. Appl. Polym. Sci., 2007, 104, 310–317.
http://dx.doi.org/10.1002/app.25733

  3. Haile, W. A., Tincher, M. E., and Williams, F. W. Bio­degradable copolyester for fibers and nonwovens. Int. Nonwovens J., 2002, 11, 39–43.

  4. Baillie, C. Green Composites: Polymer Composites and the Environment. Woodhead Publishing Ltd, 2004.

  5. Petersson, L., Kvien, I., and Oksman, K. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Technol., 2007, 67, 2535–2544.
http://dx.doi.org/10.1016/j.compscitech.2006.12.012

  6. Yu, L., Liu, H., Dean, K., and Chen, L. Cold crystalliza­tion and postmelting crystallization of PLA plasticized by compressed carbon dioxide. J. Polym. Sci. Polym. Phys., 2008, 46, 2630–2636.
http://dx.doi.org/10.1002/polb.21599

  7. Mathew, A. P., Oksman, K., and Sain, M. The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J. Appl. Polym. Sci., 2006, 101, 300–310.
http://dx.doi.org/10.1002/app.23346

  8. He, Y., Xu, Y., Wei, J., Fan, Z., and Li, S. Unique crystallization behavior of poly(L-lactide)/poly(D-lactide) stereocomplex depending on initial melt states. Polymer, 2008, 49, 5670–5675.
http://dx.doi.org/10.1016/j.polymer.2008.10.028

  9. Day, M., Nawaby, A. V., and Liao, X. A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites. J. Therm. Anal. Calorim., 2006, 86, 623–629.
http://dx.doi.org/10.1007/s10973-006-7717-9

10. George, J., Bhagawan, S. S., and Thomas, S. Thermogravi­metric and dynamic mechanical thermal analysis of pineapple fibre reinforced polyethylene composites. J. Therm. Anal., 1996, 47, 1121–1140.
http://dx.doi.org/10.1007/BF01979452

11. George, J., Sreekala, M. S., and Thomas, S. A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci., 2001, 41, 1471–1485.
http://dx.doi.org/10.1002/pen.10846

12. Pasquini, D., Teixeira, E., Curvelo, A., Belgacem, M. N., and Dufresne, A. Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos. Sci. Technol., 2008, 68, 193–201.
http://dx.doi.org/10.1016/j.compscitech.2007.05.009

13. Marchessault, R. H., Fisa, B., and Revol, J. F. Nascent polyethylene-cellulose composite. In Cellulose Technol­ogy Research. American Chemical Society, Washington, 1975, 147–159.
http://dx.doi.org/10.1021/bk-1975-0010.ch010

14. Suryanegara, L., Nakagaito, A. N., and Yano, H. Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composite. Cellulose, 2010, 17, 771–778.
http://dx.doi.org/10.1007/s10570-010-9419-5

15. Tajeddin, B., Rahman, R. A., Abdulah, L. C., Ibrahim, N. A., and Yusof, Y. A. Thermal properties of low density polyethylene-filled kenaf cellulose composites. Eur. J. Sci. Res., 2009, 32, 223–230.

16. Bigg, D. M. Polylactide copolymers: effect of copolymer ratio and end capping on their properties. Adv. Polym. Tech., 2005, 24, 69–82.
http://dx.doi.org/10.1002/adv.20032

17. Migliaresi, C., Cohn, D., De Lollis, A., and Fambri, L. Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights: effect of thermal treatments. J. Appl. Polym. Sci., 1991, 43, 83–95.
http://dx.doi.org/10.1002/app.1991.070430109

18. Fisher, E. W., Sterzel, H. J., and Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid. Polym. Sci., 1973, 251, 980–990.

19. Mathot, V. B. F. Calorimetry and Thermal Analysis of Polymers. Hanser Publishers, Munich, 1994.

20. Fortunati, E., Armentano, I., Iannoni, A., and Kenny, J. M. Development and thermal behaviour of ternary PLA matrix composites. Polym. Degrad. Stab., 2010, 95, 2200–2206.
http://dx.doi.org/10.1016/j.polymdegradstab.2010.02.034

21. Liu, D. Y., Yuan, X. W., Bhattacharyya, D., and Easteal, A. J. Characterisation of solution cast cellulose nanofibre-reinforced poly(lactic acid). eXPRESS Polym. Lett., 2010, 4, 26–31.

22. Anuar, H. and Zuraida, A. Thermal properties of injection moulded polylactic acid–kenaf fibre biocomposite. Malaysian Polym. J., 2011, 6, 51–57.

23. Cheung, H.-Y., Lau, K.-T., Tao, X.-M., and Hui, D. A potential material for tissue engineering: silkworm silk/PLA biocomposite. Composites Part B, 2008, 39, 1026–1033.
http://dx.doi.org/10.1016/j.compositesb.2007.11.009

24. Lee, S. and Wang, S. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A, 2006, 37, 80–91.
http://dx.doi.org/10.1016/j.compositesa.2005.04.015

25. Scherer, G. W. Volume relaxation far from equilibrium. J. Am. Ceram. Soc., 1986, 69, 374–381.
http://dx.doi.org/10.1111/j.1151-2916.1986.tb04764.x

26. Joshi, S. R., Pratap, A., Saxena, N. S., Saksena, M. P., and Kumar, A. Heating rate and composition dependence of the glass transition temperature of a ternary chalcogenide glass. J. Mater. Sci. Lett., 1994, 13, 77–79.
http://dx.doi.org/10.1007/BF00416803

27. Wu, D., Wu, L., Wu, L., Xu, B., Zhang, Y., and Zhang, M. Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J. Polym. Sci. Part B, 2007, 45, 1100–1113.
http://dx.doi.org/10.1002/polb.21154

Back to Issue