ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea; pp. 156–165
PDF | doi: 10.3176/proc.2010.2.15

Authors
Tarmo Soomere, Bert Viikmäe, Nicole Delpeche, Kai Myrberg
Abstract
A Lagrangian trajectory model, TRACMASS with the use of velocity fields calculated by the Rossby Centre (Swedish Hydrological and Meteorological Institute) circulation model, is employed to analyse trajectories of current-driven surface transport in the Gulf of Finland, the Baltic Sea, for the period of 1987–1991. Statistical analysis of trajectories is performed to calculate a map of probabilities for adverse impacts released in different sea areas to hit the coast. There is a clearly defined curve (equiprobability line) in the western part of the gulf from which the chances of the propagation of adverse impacts to either of the coasts are equal. The current-driven propagation of tracers from a wide area (of reduced risk) to the coast in the central and eastern parts of the gulf is unlikely within about three weeks. A safe fairway in terms of coastal protection goes over the equiprobability line and the area of reduced risk.
References

Alenius, P., Myrberg, K., and Nekrasov, A. 1998. Physical oceanography of the Gulf of Finland: a review. Boreal Env. Res., 3, 97–125.

Alenius, P., Nekrasov, A., and Myrberg, K. 2003. The baro­clinic Rossby-radius in the Gulf of Finland. Cont. Shelf Res., 23, 563–573.
doi:10.1016/S0278-4343(03)00004-9

Andrejev, O., Myrberg, K., Alenius, P., and Lundberg, P. A. 2004a. Mean circulation and water exchange in the Gulf of Finland – a study based on three-dimensional modelling. Boreal Env. Res., 9, 1–16.

Andrejev, O., Myrberg, K., and Lundberg, P. A. 2004b. Age and renewal time of water masses in a semi-enclosed basin – application to the Gulf of Finland. Tellus, 56A, 548–558.

[ASCE] American Society of Civil Engineers. 1996. State-of-the-art review of modeling transport and fate of oil spills. ASCE Committee on Modeling Oil Spills, Water Resources Engineering Division. J. Hydraul. Eng., 122(11), 594–609.

Blanke, B. and Raynaud, S. 1997. Kinematics of the Pacific Equatorial Undercurrent: an Eulerian and Lagrangian approach from GCM results. J. Phys. Oceanogr., 27(6), 1038–1053.
doi:10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2

Castanedo, S., Medina, R., Losada, I. J., Vidal, C., Mendez, F. J., Osorio, A., Juanes, J. A. and Puente, A. 2006. The Prestige oil spill in Cantabria (Bay of Biscay). Part I: Operational forecasting system for quick response, risk assessment, and protection of natural resources. J. Coastal Res., 22(6), 1474–1489.
doi:10.2112/04-0364.1

Döös, K. 1995. Inter-ocean exchange of water masses. J. Geophys. Res., 100(C7), 13499–13514.
doi:10.1029/95JC00337

Döös, K. and Engqvist, A. 2007. Assessment of water exchange between a discharge region and the open sea – a comparison of different methodological concepts. Estuar. Coast. Shelf Sci., 74, 585–597.

Gästgifvars, M., Lauri, H., Sarkanen, A.-K., Myrberg, K., And­rejev, O., and Ambjörn, C. 2006. Modelling sur­face drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci., 70, 567–576.
doi:10.1016/j.ecss.2006.06.010

Griffa, A., Piterbarg, L. I., and Ozgokmen, T. 2004. Pre­dictability of Lagrangian particle trajectories: effects of smoothing of the underlying Eulerian flow. J. Mar. Res., 62, 1–35.
doi:10.1357/00222400460744609

Höglund, A., Meier, H. E. M., Broman, B., and Kriezi, E. 2009. Validation and Correction of Regionalised ERA-40 Wind Fields over the Baltic Sea Using the Rossby Centre Atmosphere Model RCA3.0. Rapport Oceano­grafi No. 97, Swedish Meteorological and Hydro­logical Institute, Norrköping, Sweden.

Jönsson, B., Lundberg, P., and Döös, K. 2004. Baltic sub-basin turnover times examined using the Rossby Centre Ocean Model. Ambio, 23(4–5), 257–260.
doi:10.1579/0044-7447-33.4.257

Kokkonen, T., Ihaksi, T., Jolma, A., and Kuikka, S. 2010. Dynamic mapping of nature values to support prioritization of coastal oil combating. Environ. Modell. Softw., 25(2), 248–257.
doi:10.1016/j.envsoft.2009.07.017

Lehmann, A., Krauss, W., and Hinrichsen, H.-H. 2002. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus, 54A, 299–316.

Lessin, G., Ossipova, V., Lips, I., and Raudsepp, U. 2009. Identification of the coastal zone of the central and eastern Gulf of Finland by numerical modeling, measure­ments, and remote sensing of chlorophyll a. Hydrobiologia, 692, 187–198.
doi:10.1007/s10750-009-9770-4

Meier, H. E. M. 2001. On the parameterization of mixing in three-dimensional Baltic Sea models. J. Geophys. Res., 106, 30997–31016.
doi:10.1029/2000JC000631

Meier, H. E. M. 2007. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar. Coast. Shelf Sci., 74, 717–734.

Meier, H. E. M., Döscher, R., and Faxén, T. 2003. A multi­processor coupled ice-ocean model for the Baltic Sea: application to salt inflow. J. Geophys. Res., 108(C8), 3273.
doi:10.1029/2000JC000521

Myrberg, K. and Andrejev, O. 2003. Main upwelling regions in the Baltic Sea – a statistical analysis based on three-dimensional modelling. Boreal Env. Res., 8, 97–112.

Osinski, R. and Piechura, J. 2009. Latest findings about circulation of upper layer in the Baltic Proper. In BSSC 2009 Abstract Book, August 17–21, 2009. Tallinn, 103.

Reed, M., Johansen, O., Brandvik, P. J., Daling, P., Lewis, A., Fiocco, R., Mackay, D., and Prentki, R. 1999. Oil spill modeling towards the close of the 20th century: overview of the state of the art. Spill Sci. Techn. Bull., 5(1), 3–16.
doi:10.1016/S1353-2561(98)00029-2

Sobey, R. J. and Barker, C. H. 1997. Wave-driven transport of surface oil. J. Coastal Res., 13(2), 490–496.

Soomere, T. and Quak, E. 2007. On the potential of reducing coastal pollution by a proper choice of the fairway. J. Coast. Res., Special Issue 50, 678–682.

Soomere, T., Myrberg, K., Leppäranta, M., and Nekrasov, A. 2008. The progress in knowledge of physical oceano­graphy of the Gulf of Finland: a review for 1997–2007. Oceanologia, 50, 287–362.

Soomere, T., Delpeche, N., Viikmäe, B., Quak, E., Meier, H. E. M., and Döös, K. 2010. Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Env. Res., 15, in press.

Stokstad, E. 2009. U.S. poised to adopt national ocean policy. Science, 326, 1618.
doi:10.1126/science.326.5960.1618

Vandenbulcke, L., Beckers, J.-M., Lenartz, F., Barth, A., Poulain, P.-M., Aidonidis, M., Meyrat, J., Ardhuin, F., Tonani, M., Fratianni, C., Torrisi, L., Pallela, D., Chiggiato, J., Tudor, M., Book, J. W., Martin, P., Peggion, G., and Rixen, M. 2009. Super-ensemble techniques: application to surface drift prediction. Progr. Oceanogr., 82(3), 149–167.
doi:10.1016/j.pocean.2009.06.002

Vries, P. de and Döös, K. 2001. Calculating Lagrangian trajectories using time-dependent velocity fields. J. Atmos. Ocean. Techn., 18(6), 1092–1101.
doi:10.1175/1520-0426(2001)018<1092:CLTUTD>2.0.CO;2
Back to Issue