eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
In-situ alloying of TiC-FeCr cermets in manganese vapour; pp. 533–539
PDF | 10.3176/proc.2021.4.22

Märt Kolnes, Marek Tarraste, Jakob Kübarsepp, Kristjan Juhani, Mart Viljus

Conventional vacuum sintering is, in general, inappropriate for producing manganese containing cermets because high vapour pressure combined with high sintering temperature of cermets (1400–1600 °C) causes considerable Mn loss through sublimation and evaporation. Sintering in Mn-rich microatmosphere does not only prevent Mn loss but also enables additional in-situ alloying of the binder phase during sintering. We studied alloying of TiC-based cermets bonded with high chromium steels, especially TiC-FeCr and TiC-FeCrMn, during sintering in Mn-rich atmosphere. Sintering in manganese vapour was detected to increase sinterability of the cermets, resulting in the formation of a ~1 mm thick Mn-rich surface layer with homogeneous microstructure while the core region of the material remained unaffected. This surface region of sintered TiC-FeCr and TiC-FeCrMn cermets exhibited increased Mn content and competitive mechanical properties – hardness of ~1150 HV30 and indentation fracture toughness of ~12 MPa·m1/2.


1. European Commission homepage. List of Critical Raw Materials for the EU. (accessed 2021-06-15).

2. REACH homepage. (accessed 2021-06-20).

3. Kübarsepp, J. and Juhani, K. Cermets with Fe-alloy binder: A review. Int. J. Refract. Met. Hard Mater., 2020, 92, 105290.

4. Norgren, S., García, J., Blomqvist, A. and Yin, L. Trends in the P/M hard metal industry. Int. J. Refract. Met. Hard Mater., 2015, 48, 31–45.

5. Murdoch, H. A. and Darling, K. A. Metric mapping: A color coded atlas for guiding rapid development of novel cermets and its application to “green” WC binder. Mater. Des., 2018, 150, 64–74.

6. Schubert, W. D., Fugger, M., Wittman, B. and Useldinger, R. Aspects of sintering of cemented carbides with Fe-based binders. Int. J. Refract. Met. Hard Mater., 2015, 49(1), 110–123.

7. Maccio, M. R. and Berns, H. Sintered hardmetals with iron–manganese binder. Powder Metall., 2011, 55(2), 101–109.

8. Hanyaloglu, C., Aksakal, B. and Bolton, J. D. Production and indentation analysis of WC/Fe–Mn as an alternative to cobalt-bonded hardmetals. Mater. Charact., 2001, 47(3–4), 315–322.

9. Hanyaloglu, S. C., Aksakal, B. and Şen, S. An indentation and stress analysis of WC/Fe-Mn hardmetals. Indian J. Eng. Mater. Sci., 2003, 10, 229–235.

10. Sevostyanova, I. N., Savchenko, N. L. and Kulkov, S. N. Structural and phase binder state and behavior during friction of WC-(Fe-Mn-C) composites. J. Frict. Wear, 2010, 31(4), 281–287.

11. Siemiaszko, D., Rosinski, M. and Michalski, A. Nano­crystalline WC with non-toxic Fe-Mn binder. Phys. Status Solidi C, 2010, 7(5), 1376–1379.

12. Tarraste, M., Kübarsepp, J., Juhani, K., Kolnes, M., Viljus, M. and Mere, A. Sintering of high Mn cemented carbides in Mn-rich environment. Defect Diffus. Forum, 2020, 405, 402–407.

13. Li, G., Zhou, H., Lu, J., Wu, N., Lyu, Y. and Luo, F. TiC-high Mn steel-bonded cermets with improved strength and impact toughness. Steel Res. Int., 2021, 92(3), 2000400.

14. Li, G., Zhou, H., Yang, H., Huang, M., Peng, Y. and Luo, F. The preparation process, microstructure and properties of cellular TiC-high Mn steel-bonded carbide. Materials, 2020, 13(3), 757.

15. Li, G., Jia, J., Lyu, Y., Zhao, J., Lu, J., Li, Y. and Luo, F. Effect of Mo addition mode on the microstructure and mechanical properties of TiC-high Mn steel cermets. Ceram. Int., 2020, 46(5), 5745–5752.

16. Li, G., Yang, H., Lyu, Y., Zhou., H. and Luo, F. Effect of Fe-Mo-Cr pre-alloyed powder on the microstructure and mechanical properties of TiC-high-Mn-steel cermet. Int. J. Refract. Met. Hard Mater., 2019, 84, 105031.

17. Li, H. W., Li, G. P., Guo, L. B., Luo, F. H., Wang, X. B. and Wang, S. T. Effect of WC additive on microstructural evolution and properties of TiC steel-bonded carbide. Mater. Sci. Forum, 2018, 913, 453–458.

18. Wang, Z., Lin, T., He, X., Shao, H., Zheng, J. and Qu, X. Microstructure and properties of TiC-high manganese steel cermet prepared by different sintering processes. J. Alloys Compd., 2015, 650, 918–924.

19. Rong, S. F., Liu, C., Guo, J. W., Wang, M. X. and Liu, Q. L. The influence of Hadifield steel-bonded TiC preparation process on microstructure and properties. Adv. Mat. Res., 2011, 291294, 1825–1830.

20. Kolnes, M., Kübarsepp, J., Kollo, L. and Viljus, M. Characterization of TiC-FeCrMn cermets produced by powder metallurgy method. Mater. Sci. (Medžiagotyra), 2015, 21(3), 353–357.

21. Kolnes, M., Kübarsepp, J., Viljus, M., Traksmaa, R. and Illopmägi S. Effect of sintering conditions on microstructure and performance of TiC-FeCrMn cermets. In Proceedings of the World PM2016 Congress, Hamburg, Germany, October 9–13, 2016. EPMA.

22. Tadashi, M. (ed.). Application of Thermodynamics to Bio­logical and Materials Science. IntechOpen, London, 2011.

23. Šalak, A. and Selecká, M. Manganese in Powder Metallurgy Steels. Springer, New York, NY, 2012.

24. Taninouchi, Y. and Okabe, T. H. Vapor treatment for alloying and magnetizing platinum group metals. In Rare Metal Technology 2017 (Kim, H., Alam, S., Neelameggham, N., Oosterhof, H., Ouchi, T. and Guan, X., eds). Springer, Cham, 2017, 119–127.

25. Evans, A. G. and Charles, E. A. Fracture toughness deter­minations by indentation. J. Am. Ceram. Soc., 1976, 59(7–8), 371–372.

26. Kolnes, M., Mere, A., Kübarsepp, J., Viljus, M., Maaten, B. and Tarraste, M. Microstructure evolution of TiC cermets with ferritic AISI 430L steel binder. Powder Metall., 2018, 61(3), 197–209.

Back to Issue