eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Study of the impact of the powder laser cladding position on the parameters of the cladded layer; pp. 257–265
PDF | 10.3176/proc.2020.3.08

Andris Ratkus, Toms Torims

This research describes the realization of a hitherto unexplored aspect of laser cladding technology – laser cladding with powder – to provide cladding in the overhead (OH) position. This position is important for bore claddings where objects are large and the bore cannot be orientated vertically to ensure a constantly vertical cladding position, or when the object cannot be secured in a chuck and rotated to provide a constantly flat (F) cladding position. Laser cladding experiments have been performed to determine the dependence of the laser cladding characteristics on the cladding position and nozzle angle. Safe laser cladding using powder and a coaxial nozzle in the OH position is possible with a nozzle angle α = 36°. In the paper, mathematical expressions were developed for predicting such characteristics as the cladding thickness (H), cladding area (AC) and dilution (DC) of the laser cladding technology, by introducing the parameter G, in which the obtained results are predictable and useful. The introduced parameter G consists of the above laser cladding parameters combined with simple equations, making it possible to predict the results. It has been experimentally proved that laser cladding with powder can be successfully implemented in the flat (F), vertical up (VU), overhead (OH) and vertical down (VD) positions, therefore laser cladding with powder can be used for bore claddings. The influence of the positions F, VU, OH and VD on the cladding characteristics H, AC and DC has been experimentally determined. Hardness measurement results show a correlation between the melt pool temperature distribution and microhardness (HV) values. The knowledge acquired in this research is adaptable and also applicable to the development of external surface cladding.


1. Bach, Fr.-W., Laarmann, A., and Wenz, T. (eds). Modern Surface Technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006.

2. Fischer, A. and Bobzin, K. (eds). Friction, Wear and Wear Protection. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.

3. Bartels, F., Jonnalagadda, A., Wiener, M., and Stiles, E. Laser cladding of tubes. US Patent 9,126,286B2, 8 September 2015.

4. Inner diameter coating system COAXid.
(accessed 2020-04-22).

5. Bady, T., Bohling, M., Lensch, G., Fischer, A., Feikus, F.-J., and Sach, A. Process and device for laser treatments of inside surfaces. US Patent 6,303,897, 16 October 2001.

6. Cheikh El, H., Courant, B., Branchu, S., Hascoët, J.-Y., and Guillén, R. Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process. Opt. Lasers Eng., 2012, 50(3), 413–422.

7. Guo, S., Chen, Z., Cai, D., Zhang, Q., Kovalenko, V., and Yao, J. Prediction of simulating and experiments for co-based alloy laser cladding by HPDL. Phys. Procedia, 2013, 50, 375–382.

8. Sun, Y. and Hao, M. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser. Opt. Lasers Eng., 2012, 50(7), 985–995.

9. Tabernero, I., Lamikiz, A., Ukar, E., López de Lacalle, L. N., Angulo, C., and Urbikain, G. Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding. J. Mater. Process. Technol., 2010, 210(15), 2125–2134.

10. Zhang, K., Liu, W., and Shang, X. Research on the processing experiments of laser metal deposition shaping. Opt. Laser Technol., 2007, 39(3), 549–557.

11. Hofman, J. T., de Lange, D. F, Pathiraj, B., and Meijer, J. FEM modeling and experimental verification for dilution control in laser cladding. J. Mater. Process. Technol., 2011, 211(2), 187–196.

12. Modular powder nozzle system COAXn.
(accessed 2020-04-27).

13. EN 10025-2 S355J2 high strength structural steel plate.
(accessed 2020-06-02).

14. Kennametal Stellite alloys.
(accessed 2014-07-07).

15. Antony, J. Design of Experiments for Engineers and Scientists. Butterworth Heinemann, Burlington, 2003.

16. Montgomery, D. C. Design and Analysis of Experiments, 5th Ed. John Wiley & Sons, Weinheim, 2001.

17. Mason, R. L., Gunst, R. F., and Hess, J. L. Statistical Design and Analysis of ExperimentsWith Applications to Engineering and Science, 2nd Ed. John Wiley & Sons, New Jersey, 2003.

18. Lin, C.-M. Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade. Vacuum, 2015, 115, 117–123.

19. Saqib, S., Urbanic, R. J., and Aggarwal, K. A. Analysis of laser cladding bead morphology for developing additive manufacturing travel paths. Procedia CIRP, 2014, 17, 824–829.

20. Sohrabpoor, H. Analysis of laser powder deposition parameters: ANFIS modeling and ICA optimization. Optik, 2016, 127, 4031–4038.

21. Zhang, K., Liu, W., and Shang, X. Research on the processing experiments of laser metal deposition shaping. Opt. Laser Technol., 2007, 39(3), 549–557.

Back to Issue