eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
A geometric approach to position tracking control of a nonholonomic planar rigid body: case study of an underwater vehicle; pp. 215–227
PDF | 10.3176/proc.2020.3.05

Ashutosh Simha, Ülle Kotta ORCID Icon

This paper addresses the position tracking control design problem for an autonomous underwater vehicle (AUV). The vehicle dynamics is subjected to a non-holonomic velocity constraint arising due to fluid interactions, resulting in a differential- algebraic equation (DAE) formulation for the equations of motion. A reduced order state-space model in a chained form is derived after solving the constraint force. A hierarchical geometric control law is designed for tracking the position of the centre of mass, via this chained form so that the tracking error is almost globally exponentially stable. Simulations on a planar AUV model have been presented to illustrate the performance of the control law.


1. Blajer, W and Kołodziejczyk, K. A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Sys. Dyn., 2004, 11(4), 343–364.

2. Bloch, A. M., Baillieul, J., Crouch, P., Marsden, J. E., Zenkov, D., Krishnaprasad, P. S., and Murray, R. M. Nonholonomic Mechanics and Control. Springer–Verlag, New York, 2003.

3. Bloch, A. M., Colombo, L., Gupta, R., and de Diego, D. M. A geometric approach to the optimal control of nonholonomic mechanical systems. In Analysis and Geometry in Control Theory and its Applications (Bettiol, P., Cannarsa, P., Colombo, G., Motta, M., and Rampazzo, F., eds). Springer, Cham, 2015, 35–64.

4. Bloch, A. M. Nonholonomic Mechanics and Control. Springer–Verlag, New York, 2003.

5. Bloch, A. M. Reyhanoglu, M., and McClamroch, N. H. Control and stabilization of nonholonomic dynamic systems. IEEE Trans. Autom. Control, 1992, 37(11), 1746–1757.

6. Boothby, W. M. An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd Ed. Academic Press, New York, 1986.

7. Brenan, K. E., Campbell, S. L., and Petzold, L. R. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. SIAM, 1995.

8. Brockett, R. W. Control theory and singular Riemannian geometry. In New Directions in Applied Mathematics (Hilton, P. J. and Young, G. S., eds). Springer, 1982, 11–27.

9. Brockett, R. W. Asymptotic stability and feedback stabilization. In Differential Geometric Contol Theory (Brockett, R., W., Millman, R. S., and Sussman, H. J., eds). Birkhauser, Boston, 181–191.

10. Bullo, F. and Lewis, A. D. Geometric Control of Mechanical Systems. Springer–Verlag, New York, 2005.

11. Chaturvedi, N. A., Bloch, A. M., and McClamroch, N. H. Global stabilization of a fully actuated mechanical system on a Riemannian manifold: controller structure. In Proceedings of the American Control Conference (ACC 2006), June 14–16,  2006, Minneapolis, USA.

12. Chaturvedi, N. A., Bloch, A. M., and McClamroch, N. H. Global stabilization of a fully actuated mechanical system on a Riemannian manifold including control saturation effects. In Proceedings of the 45th IEEE Conference on Decision and Control, December 13–15, 2006, San Diego, USA. IEEE, 2007, 6116–6121.

13. De Luca, A. and Oriolo, G. Modelling and control of nonholonomic mechanical systems. In Kinematics and Dynamics of Multi-Body Systems (Angeles, J. and Kecskeméthy, A., eds). Springer, Vienna, 1995, 277–342.

14. De Luca, A. and Oriolo, G., and Samson, C. Feedback control of a nonholonomic car-like robot. In Robot Motion Planning and Control (Laumond, J. P., ed.). Springer, Berlin, Heidelberg, 1998, 171–253.

15. Fossen, T. I. et al. Guidance and Control of Ocean Vehicles. Wiley, New York, 1994.

16. Fuentes, R., Hicks, G., and Osborne, J. The spring paradigm in tracking control of simple mechanical systems. Automatica, 2011, 47(5), 993–1000.

17. Gorbatenko, E. The differential geometry of nonholonomic manifolds according to V. V. Vagner. Geom. Sb. Tomsk univ, 1985, 26, 31–43 (in Russian).

18. Grushkovskaya, V. and Zuyev, A. Stabilization of non-admissible curves for a class of nonholonomic systems. In Proceedings of the 18th European Control Conference (ECC 2019), June 25–28, 2019, Naples, Italy. IEEE, 2019, 656–661.

19. Khalil, H. K. Nonlinear Systems, 3rd Edition. Prentice Hall, New Jersey, 1996.

20. Koditschek, D. E. The application of total energy as a Lyapunov function for mechanical control systems. Contemp. Math., 1989, 97, 131.

21. Arnol’d, V. I. Dynamical Systems III. Springer–Verlag, Berlin, Heidelberg, 1988.

22. Nonholonomic Mechanical Systems with Symmetry. CDS Technical Report 94-013, California Institute of Technology, 1995.

23. Krstic, M., Kanellakopoulos, I., and Kokotovic, P. V. Nonlinear and adaptive control design. John Wiley & Sons, New York, 1995.

24. Krym, V. R. The Schouten curvature for a nonholonomic distribution in sub-Riemannian geometry and Jacobi fields. In Proceedings of the School-Seminar on Optimization Problems and their Applications (OPTA-SCL 2018), July 8–14, 2018, Omsk, Russia (Belim, S., Kononov, A., and Kovalenko, Y., eds), 213–227.

25. Lee. J. M. Smooth manifolds. In Introduction to Smooth Manifolds. Springer, NewYork, 2013, 1–31.

26. Levine, J. Analysis and Control of Nonlinear Systems: A Flatness-based Approach. Springer–Verlag, Berlin, Heidelberg, 2009.

27. Madhushani, T. W. U., Maithripala, D. S., and Berg, J. M. Feedback regularization and geometric PID control for trajectory tracking of mechanical systems: Hoop robots on an inclined plane. In Proceedings of the American Control Conference (ACC 2017), May 24–26, 2017, Seattle, USA. IEEE, 2017, 3938–3943.

28. Maithripala, D. S. and Berg, J. M. An intrinsic PID controller for mechanical systems on Lie groups. Automatica, 2015, 54, 189–200.

29. Maithripala, D. S., Berg, J. M., and Dayawansa, W. P. Almost-global tracking of simple mechanical systems on a general class of Lie groups. IEEE Trans. Autom. Control, 2006, 51(2), 216–225.

30. Morin, P. and Samson, C. Trajectory tracking for nonholonomic systems. In Robot Motion and Control. Lecture Notes in Control and Information Sciences, vol 335 (Kozłowski, K., ed.). Springer, London, 2008.

31. Murray, R. M., Walsh, G., and Sastry, S. S. Stabilization and tracking for nonholonomic control systems using time-varying state feedback. IFAC Proc. Volumes, 1992, 25(13), 109–114.

32. Murray, R. M., Li, Z., and Sastry, S. S. A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton, 1994.

33. Murray, R. M. and Sastry, S. S. Steering nonholonomic systems using sinusoids. In Proceedings of the 29th IEEE Conference on Decision and Control, December 5–7, 1990, Honolulu, USA. IEEE, 1990, 2097–2101.

34. Murray, R. M. and Sastry, S. S. Steering nonholonomic systems in chained form. In Proceedings of the 30th IEEE Conference on Decision and Control, December 11–13, 1991, Brighton, UK.

35. Oriolo, G., De Luca, A., and Vendittelli, M. WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Trans. Control Syst. Technol., 2002, 10(6), 835–852.

36. Sastry, S. S. Nonlinear systems: Analysis, Stability, and Control. Springer Science+Business Media, New York, 2013.

37. Simha, A. and Raha, S. A Riemannian geometric approach to output tracking for nonholonomic systems. IFAC-PapersOnLine, 2019, 52(16), 144–149.

38. Vranceanu, G. Parallélisme et courbure dans une variété non holonome. Atti del Congresso Internaz. del Matematici, Bologna, 1928, 5, 63–75.

39. Yang, E., Ikeda, T., and Mita, T. Nonlinear tracking control of a nonholonomic fish robot in chained form. In Proceedings of the SICE 2003 Annual Conference (IEEE Cat. No. 03TH8734), August 4–6, 2003, Fukui, Japan. IEEE, 2003, 1260–1265.

40. Zuyev, A. Exponential stabilization of nonholonomic systems by means of oscillating controls. SIAM J. Control Optim., 2016, 54(3), 1678–1696.


Back to Issue