eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Bioceramic scaffolds by additive manufacturing for controlled delivery of the antibiotic vancomycin; pp. 185–190

Nikhil Kamboj, Miguel A. Rodríguez, Ramin Rahmani, Konda Gokuldoss Prashanth, Irina Hussainova

Silicon–calcium silicate scaffolds were fabricated by selective laser melting (SLM). Rectangular composite scaffolds with a pore size of 400 µm were designed with dimensions of 10 × 20 × 5 mm3. For imparting controlled drug release capability, scaffolds were covered with polycaprolactone (PCL) coatings for the sustained delivery of vancomycin. The drug release profile of the coated scaffolds was studied by UV–visible spectroscopy. The encapsulated drug within the PCL coated scaffold exhibited a controlled release of vancomycin. Nearly 50% of the vancomycin release from the scaffolds was observed during the first 40 h followed by the sustained release of vancomycin of nearly 20% of the actual loaded drug for the next six days. These findings suggest that SLM synthesized scaffolds with PCL coating can expand their applicability to be used as a target for Staphylococci aureus bacteria, which often cause chronic infections such as chronic osteomyelitis in bone.



   1. Bigucci, F., Luppi, B., Cerchiara, T., Sorrenti, M., Bettinetti, G., Rodriguez, L., and Zecchi, V. Chitosan/ pectin polyelectrolyte complexes: selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur. J. Pharm. Sci., 2008, 35(5), 435–441.

   2.  Joosten, U., Joist, A., Gosheger, G., Liljenqvist, U., Brandt, B., and von Eiff, C. Effectiveness of hydro­xyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials, 2005, 26, 5251–5258.

   3.  Proctor, R. A., von Eiff, C., Kahl, B. C., Becker, K., McNamara, P., Herrmann, M., and Peters, G. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat. Rev. Microbiol., 2006, 4(4), 295.

   4.  Zalavras, C. G., Patzakis, M. J., and Holtom, P. Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin. Orthop. Relat. R., 2004, 427, 86–93.

   5.  Kluin, O. S., van der Mei, H. C., Busscher, H. J., and Neut, D. Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin. Drug Deliv., 2013, 10(3), 341–351.

   6.  Neut, D., van de Belt, H., van Horn, J. R., van der Mei, H. C., and Busscher, H. J. Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials, 2003, 24, 1829–1831.

   7.  Henry, S. L. and Galloway, K. P. Local antibacterial therapy for the management of orthopaedic infections. Clin. Pharmacokinet., 1995, 29(1), 36–45.

   8.  Deka, J. R., Song, Y., and Yang, Y. C. The influence of isothermal aging, surfactant and inorganic precursors concentrations on pore size and structural order of mesoporous bioactive glass. Solid State Sci., 2018, 84, 104–111.

   9.  Du, X., Fu, S., and Zhu, Y. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J. Mater. Chem. B, 2018, 6, 4397–4412.

10.  Zhang, Y., Zhai, D., Xu, M., Yao, Q., Chang, J., and Wu, C. 3D-printed bioceramic scaffolds with a Fe3O4/ graphene oxide nanocomposite interface for hyperthermia therapy of bone tumor cells. J. Mater. Chem. B, 2016, 4, 2874–2886.

11.  Zhou, Z., Yao, Q., Li, L., Zhang, X., Wei, B., Yuan, L., and Wang, L. Antimicrobial activity of 3D-printed poly (ɛ-caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres. Med. Sci. Monit., 2018, 24, 6934–6945.

12.  Lee, J. Y., An, J., and Chua, C. K. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today, 2017, 7, 120–133.

13.  Leong, K. F., Cheah, C. M., and Chua, C. K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 2003, 24, 2363–2378.

14.  Shruti, S., Salinas, A. J., Lusvardi, G., Malavasi, G., Menabue, L., and Vallet-Regi, M., 2013. Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses. Acta Biomater., 2013, 9, 4836–4844.

15.  Elsayed, H., Rebesan, P., Crovace, M. C., Zanotto, E. D., Colombo, P., and Bernardo, E. Biosilicate® scaffolds produced by 3D‐printing and direct foaming using preceramic polymers. J. Am. Ceram. Soc., 2019, 102, 1010–1020.

16.  Hajiali, F., Tajbakhsh, S., and Shojaei, A. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polym. Rev., 2018, 58(1), 164–207.

17.  Kim, H-W., Knowles, J. C., and Kim, H-E. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J. Mater. Sci. Mater. Medi., 2005, 16(3), 189–195.

18.  Parent, M., Baradari, H., Champion, E., Damia, C., and Viana-Trecant, M. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: a review of the parameters affecting the loading and release of the therapeutic substance. J. Control. Release, 2017, 252, 1–17.

19.  Zhang, J., Zhao, S., Zhu, Y., Huang, Y., Zhu, M., Tao, C., and Zhang, C. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater., 2014, 10, 2269–2281.


Back to Issue