eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
A novel information geometry method for estimating parameters of the Weibull wind speed distribution; pp. 39–49

Mehmet Kurban, Emrah Dokur, Salim Ceyhan

Accurate modelling of wind speed is very important for the assessment of the wind energy potential of a region. The two-parameter Weibull distribution is widely used to model wind speed. Many different numerical methods can be used to estimate the shape and scale parameters of the Weibull distribution function. This paper proposes the estimation of parameters based on a novel approach, the Information Geometry Method (IGM). Non-Euclidean geometry and the Riemannian metric called the Fisher metric or the information metric are used in this approach. Differential equations derived from the Fisher information matrix are solved for the Weibull statistical manifold by the shooting method. The IGM is compared with the graphical method, maximum likelihood method, method of Lysen, method of Justus, and power density method. In particular, it is shown that this approach has a better performance than the other estimation methods according to the power density results for the periods of three years from 2012 to 2014 for Bilecik, a city of Turkey. Therefore, the IGM as a new approach used for the estimation of parameters of the Weibull distribution function can be a good alternative for the assessment of the wind energy potential.


   1.  GWEC. Global Wind Energy Council. Global wind statistics 2016. <> (accessed 2017-02-23).

   2.  Pishgar-Komleh, S. H., Keyhani, A., and Sefeedpari, P. Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renew. Sust. Energ. Rev., 2015, 42, 313–322.

   3.  Garcia, A., Torres, J. L., Prieto, E., and Francisco, A. D. Fitting wind speed distributions: a case study. Sol. Energy, 1998, 62(2), 139–144.

   4.  Luna, R. E. and Church, H. W. Estimation of long-term concentrations using a universal wind speed distribution. J. Appl. Meteorol., 1974, 13, 910–916.<0910:EOLTCU>2.0.CO;2

   5.  Justus, C. G., Hargraves, W. R., and Yalcin, A. Nationwide assessment of potential output from wind-powered generators. J. Appl. Meteorol., 1976, 15, 673–678.<0673:NAOPOF>2.0.CO;2

   6.  Kiss, P. and Janosi, I. M. Comprehensive empirical analysis of ERA-40 surface wind speed distribution over Europe. Energ. Convers. Manage., 2008, 49, 2142–2151.

   7.  Bardsley, W. E. Note on the use of the inverse Gaussian distribution for wind energy applications. J. Appl. Meteorol., 1980, 19, 1126–1130.<1126:NOTUOT>2.0.CO;2

   8.  Vogel, R. M., McMahon, T. A., and Chiew, F. H. S. Floodflow frequency model selection in Australia. J. Hydrol., 1993, 146, 421–449.

   9.  Guttman, N. B., Hosking, J. R. M., and Wallis, J. R. Regional precipitation quantile values for the continental United States computed from L-moments. J. Clim., 1993, 6, 2326–2340.<2326:RPQVFT>2.0.CO;2

10.  Stedinger, J. R. Fitting log normal distributions to hydrologic data. Water Resour. Res., 1980, 16, 481–490.

11.  Mert, I. and Karakuş, C. A statistical analysis of wind speed data using Burr, generalized gamma, and Weibull distributions in Antakya, Turkey. Turk. J. Elec. Eng. & Comp. Sci., 2015, 23, 1571–1586.

12.  Sohoni, V., Gupta, S., and Nema, R. A comparative analysis of wind speed probability distributions for wind power assessment of four sites. Turk. J. Elec. Eng. & Comp. Sci., 2016, 24, 4724–4735.

13.  Morgan, E. C., Lackner, M., Vogel, R. M., and Baise, L. G. Probability distributions for offshore wind speeds. Energ. Convers. Manage., 2011, 52, 15–26.

14.  Takle, E. S. and Brown, J. M. Note on the use of Weibull statistics to characterise wind-speed data. J. Appl. Meteorol., 1978, 17, 556–559.<0556:NOTUOW>2.0.CO;2

15.  Jaramillo, O. A. and Borja, M. A. Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case. Renew. Energ., 2004, 29, 1613–1630.

16.  Rosen, K., Van Buskirk, R., and Garbesi, K. Wind energy potential of coastal Eritrea: an analysis of sparse wind data. Sol. Energy, 1999, 66, 201–213.

17.  Carta, J. A., Ramirez, P., and Velazquez, S. A review of wind speed probability distributions used in wind energy analysis case studies in the Canary Islands. Renew. Sust. Energ. Rev., 2009, 13, 933–955.

18.  Auwera, V., Meyer, L. F., and Malet, L. M. The use of the Weibull three parameter model for estimating mean wind power densities. J. Appl. Meteorol., 1980, 19, 819–825.<0819:TUOTWT>2.0.CO;2

19.  Stevens, M. J. and Smulders, P. T. The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind Eng., 1979, 3, 132–145.

20.  Justus, C. G., Hargraves, W. R., Mikhail, A., and Graber, D. Methods for estimating wind speed frequency distributions.
J. Appl. Meteorol., 1978, 17, 350–353.<0350:MFEWSF>2.0.CO;2

21.  Akdag, S. A. and Dinler, A. A new method to estimate Weibull parameters for wind energy applications. Energ. Convers. Manage., 2009, 50, 1761–1766.

22.  Lysen, E. H. Introduction to Wind Energy. SWD Publication SWD 82-1, The Netherlands, 1983.

23.  Carneiro, T. C., Melo, S. P., Carvalho, P. C., and Braga, A. P. D. S. Particle Swarm Optimization method for estimation of Weibull parameters: a case study for the Brazilian northeast region. Renew. Energ., 2016, 86, 751–759.

24.  Shamshirband, S., Keivani, A., Mohammadi, K., Lee, M., Hamid, S. H. A., and Petkovic, D. Assessing the proficiency of adaptive neuro-fuzzy system to estimate wind power density: case study of Aligoodarz, Iran. Renew. Sust. Energ. Rev., 2016, 59, 429–435.

25.  Arslan, O. Technoeconomic analysis of electricity generation from wind energy in Kutahya, Turkey. Energy, 2010, 35, 120–131.

26.  Malik, A. and Al-Badi, A. H. Economics of Wind turbine as an energy fuel saver – a case study for remote application in Oman. Energy, 2009, 34, 1573–1578.

27.  Liu, F. J. and Chang, T. P. Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment. Energy, 2011, 36, 1820–1826.

28.  Chang, T. P., Liu, F. J., Ko, H. H., Cheng, S. P., Sun, L. C., and Kuo, S. C. Comparative analysis on power curve models of wind turbine generator in estimating capacity factor. Energy, 2014, 73, 88–95.

29.  Arslan, T., Bulut, Y. M., and Yavuz, A. A. Comparative study of numerical methods for determining Weibull parameters for wind energy potential. Renew. Sust. Energ. Rev., 2014, 40, 820–825.

30.  Carrasco-Díaz, M., Rivas, D., Orozco-Contreras, M., and Anchez-Montante, O. S. An assessment of wind power potential along the coast of Tamaulipas, northeastern Mexico. Renew. Energ., 2015, 78, 295–305.

31.  Manwell, J. F., McGowan, J. G., and Rogers, A. L. Wind Energy Explained: Theory, Design and Application. John Wiley & Sons, Amherst, USA, 2002.

32.  Mathew, S. Wind Energy: Fundamentals, Resource Analysis and Economics. Springer-Verlag, Berlin–Heidelberg, 2006.

33.  Boudia, S. M. and Guerri, O. Investigation of wind power potential at Oran, northwest of Algeria. Energ. Convers. Manage., 2015, 105, 81–92.

34.  Tizpar, A., Satkin, M., Roshan, M. B., and Armoudli, Y. Wind resource assessment and wind power potential of Mil-E Nader region in Sistan and Baluchestan Province, Iran – Part 1: Annual energy estimation. Energ. Convers. Manage., 2014, 79, 273–280.

35.  Patel, M. R. Wind and Solar Power Systems: Design, Analysis, and Operation. CRC Press, 2005.

36.  Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., and Jalilvand, M. Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energ. Convers. Manage., 2016, 108, 322–335.

37.  Galanis, G., Chu, P. C., Kallos, G., Kuo, Y.-H., and Dodson, C. T. J. Wave height characteristics in the north Atlantic ocean: a new approach based on statistical and geometrical techniques. Stoch. Environ. Res. Risk Assess., 2012, 26, 83–103.

38.  Amari, S.-i. Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics, 28. Springer-Verlag, Berlin, 1985.

39.  Amari, S.-i. and Nagaoka, H. Methods of Information Geometry. Translations of Mathematical Monographs, 191. American Mathematical Society, Oxford University Press, 2000.

40.  Arwini, K. and Dodson, C. T. J. Alpha-geometry of the Weibull manifold. Presented at The Second Basic Science Conference, Al-Fatah University, Tripoli, Libya, 4–8 November, 2007. WeibullTripoli07.pdf (accessed 2017-12-05).

41.  Famelis, I., Galanis, G., Ehrhardt, M., and Triantafyllou, D. Classical and quasi-Newton methods for a meteorological parameters prediction boundary value problem. Appl. Math., 2014, 8, 2683–2693.

42.  Arwini, K. and Dodson, C. T. J. Information Geometry: Near Randomness and Near Independence. Lecture Notes in Mathematics, 1953. Springer-Verlag, Berlin, 2008.

  43. Cho, B. S. and Jung, S. Y. A note on the geometric structure of the t-distribution. Journal of the Korean Data and Information Science Society, 2010, 21(3), 575–580.

Back to Issue