ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Luminescence properties of chlorine molecules in glassy SiO2 and optical fibre waveguides; pp. 455–461

Full article in PDF format | https://doi.org/10.3176/proc.2017.4.23

Authors
Linards Skuja, Koichi Kajihara, Krisjanis Smits, Kalvis Alps, Andrejs Silins, Janis Teteris

Abstract

Glassy SiO2 is the basic material for optical fibre waveguides and manufacturing-induced Cl impurities reduce their transparency in UV spectral range. This work reports in-depth study/spectroscopic parameters of the near-infrared (1.23 eV) low-temperature photo-luminescence (PL) of interstitial Cl2 molecules in SiO2. The zero-phonon line position was estimated at 2.075 eV on the basis of anharmonicity of Cl2 PL vibronic data. The vibronic sub-bands are broadened by coupling to phonons and by an additional contribution from the glassy disorder. The Huang‒Rhys factor is ≈13. The PL decay time is between 1 and 10 ms in the temperature range 100 K‒13 K and can be reproduced by 3 exponents. Cl2 PL retains relatively high quantum yield and its characteristic structured shape, when the temperature is increased from 13 K to the liquid nitrogen temperature. This allows using it conveniently as a high-sensitivity diagnostic tool for detecting Cl2 impurities in optical fibre waveguides. Time-resolved measurements of optical fibre waveguides indicate that the lower detection limit is below 1010 Cl2/cm3.


References

   1.  Chiodini, N., Lauria, A., Lorenzi, R., Brovelli, S., Meinardi, F., and Paleari, A. Sol–gel strategy for self-induced fluorination and dehydration of silica with extended vacuum ultraviolet transmittance and radiation hardness. Chem. Mater., 2012, 24, 677‒681.
https://doi.org/10.1021/cm202664a

   2.  Awazu, K., Kawazoe, H., Muta, K., Ibuki, T., Tabayashi, K., and Shobatake, K. Characterization of silica glasses, sintered under Cl2 ambients. J. Appl. Phys., 1991, 69, 1849‒1852.
https://doi.org/10.1063/1.348753

   3.  Girard, S., Ouerdane, Y., Origlio, G., Marcandella, C., Boukenter, A., Richard, N., Baggio, J., Paillet, P., Cannas, M., Bisutti, J., Meunier, J. P., and Boscaino, R. Radiation effects on silica-based preforms and optical fibers–I: experimental study with canonical samples. IEEE Trans. Nucl. Sci., 2008, 55, 3473‒ 3482.
https://doi.org/10.1109/TNS.2008.2007232
https://doi.org/10.1109/TNS.2008.2007297

   4.  Cheremisin, I. I., Ermolenko, T. A., Evlampiev, I. K., Popov, S. A., Turoverov, P. K., Golant, K. M., and Zabezhajlov, M. O. Radiation-hard KS‒4V glass and optical fiber, manufactured on its basis, for plasma diagnostics in ITER. Plasma Devices Oper., 2004, 12, 1‒9.
https://doi.org/10.1080/10519990410001652593

   5.  Kajihara, K., Hirano, M., Skuja, L., and Hosono, H. Reactions of SiCl groups in amorphous SiO2 with mobile interstitial chemical species: formation of interstitial Cl2 and HCl molecules, and role of interstitial H2O molecules. J. Appl. Phys., 2005, 98, 043515(1‒9).

   6.  Skuja, L., Kajihara, K., Smits, K., Silins, A., and Hosono, H. Luminescence and Raman detection of molecular Cl2 and ClClO molecules in amorphous SiO2 matrix. J. Phys. Chem. C, 2017, 121, 5261–5266.
https://doi.org/10.1021/acs.jpcc.6b13095

   7.  Maric, D., Burrows, J. P., Meller, R., and Moortgat, G. K. A study of the UV-visible absorption spectrum of molecular chlorine. J. Photochem. Photobiol. A, 1993, 70, 205‒214.
https://doi.org/10.1016/1010-6030(93)85045-A

   8.  Skuja, L., Hirano, M., Hosono, H., and Kajihara, K. Defects in oxide glasses. Phys. Stat. Sol. C, 2005, 2, 15–24.
https://doi.org/10.1002/pssc.200460102

   9.  Girard, S., Kuhnhenn, J., Gusarov, A., Brichard, B., van Uffelen, M., Ouerdane, Y., Boukenter, A., and Marcandella, C. Radiation. Effects on silica-based optical fibers: recent advances and future challenges. IEEE Trans. Nucl. Sci., 2013, 60, 2015‒2036.
https://doi.org/10.1109/TNS.2013.2281832
https://doi.org/10.1109/TNS.2012.2235464

10.  Morse, P. M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev., 1929, 34, 57‒64.
https://doi.org/10.1103/PhysRev.34.57

11.  Ault, B. S., Howard, W. F., Jr., and Andrews, L. Laser-induced fluorescence and Raman spectra of chlorine and bromine molecules isolated in inert matrices. J. Mol. Spectrosc., 1975, 55, 217‒228.
https://doi.org/10.1016/0022-2852(75)90266-0

12.  Bondybey, V. E. and Fletcher, C. Photophysics of low lying electronic states of Cl2 in rare gas solids. J. Chem. Phys., 1976, 64, 3615‒3620.
https://doi.org/10.1063/1.432713

13.  Occelli, F., Krisch, M., Loubeyre, P., Sette, F., Le Toullec, R., Masciovecchio, C., and Rueff, J.-P. Phonon dispersion curves in an argon single crystal at high pressure by inelastic x-ray scattering. Phys. Rev. B, 2001, 63, 224306(1‒8).

14.  Peyerimhoff, S. D. and Buenker, R. J. Electronically excited and ionized states of the chlorine molecule. Chem. Phys., 1981, 57, 279‒296.
https://doi.org/10.1016/0301-0104(81)80208-X

15.  Zavorotny, Yu. S., Lutsko, E. V., Rybaltovskii, A. O., Chernov, P. V., Sokolov, V. O., and Khrapko, R. R. Color centers in sulfur-doped silica glass: spectroscopic manifestations of an interstitial molecule S2. Glass Phys. Chem., 2001, 27, 331‒336.
https://doi.org/10.1023/A:1011364126241

16.  Spallino, L., Vaccaro, L., Sciortino, L., Agnello, S., Buscarino, G., Cannas, M., and Gelardi, F. M. Visible-ultraviolet vibronic emission of silica nanoparticles. Phys. Chem. Chem. Phys., 2014, 16, 22028‒22034.
https://doi.org/10.1039/C4CP02995J


Back to Issue