ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Experimental study of steered fibre composite production; pp. 295–299

Full article in PDF format | https://doi.org/10.3176/proc.2017.3.09

Authors
Anti Haavajõe, Madis Mikola, Hadi Osali, Meelis Pohlak, Henrik Herranen

Abstract

The main goal of the study was to design the laminating head for an industrial robot that would be competitive from the aspect of the price and versatility and therefore suitable for the SMEs. A set of experiments were carried out to analyse key parameters during the laminating process of PA12-CF60 material.


References

   1.  Astrom, B. T. Manufacturing of Polymer Composites. CRC Press, 1997.

    2.  Lee, S. M. (ed.). Handbook of Composite Reinforcements, Vol. 30. Wiley-VCH, 1992.

    3.  Khan, S. Thermal Control System Design for Automated Fiber Placement Process. Concordia University, Montreal, 2011.

    4.  Aized, T. and Shirinzadeh, B. Robotic fiber placement process analysis and optimization using response surface method. Manuf. Technol., 2010, 55, 393–404.
https://doi.org/10.1007/s00170-010-3028-1

    5.  Campbell, F. C. Manufacturing Processes for Advanced Composites. Elsevier, 2003.

    6.  Dell’Anno, G., Partridge, I., Cartié, D., Hamlyn, A., Chehura, E., James, S., and Tatam, R. Automated manufacture of 3D reinforced aerospace composite structures. Int. J. Struct. Integr., 2012, 3(1), 22–40.
https://doi.org/10.1108/17579861211209975

    7.  Grimshaw, M. N., Grant, C. G., and Diaz, J. M. L. Advanced technology tape laying for affordable manufacturing of large composite structures. In International Sampe Symposium and Exhibition. Citeseer, 2001, 4. SAMPE, Long Beach, 2484–2494.

    8.  Olsen, H. B. and Craig, J. J. Automated composite tape lay-up using robotic devices. In Proceedings of 1993 IEEE International Conference on Robotics and Automation. IEEE Computer Society Press, Los Alamitos, CA, 1993, Vol. 3, 291–297.
https://doi.org/10.1109/ROBOT.1993.292190

    9.  Baker, A. A. Composite Materials for Aircraft Structures. AIAA, 2004.

 10.  Roberts, R. A. Project PAJ1: Failure criteria and their application to Visco-Elastic/Visco-Plastic materials. Report 5. Review of methods for the measurement of tack, 1997, September, 1–11.

 11.  Crossley, R., Schubel, P., and Warrior, N. The experimental characterisation of prepreg tack. ICCM International Conference of Composite Materials, 2009.

 12.  Campbell, F. C. Structural Composite Materials. ASM International, 2010.

 13.  Grouve, W. J. B., Warnet, L., Akkerman, R., Wijskamp, S., and Kok, J. S. M. Weld strength assessment for tape placement. Int. J. Mater. Form., 2010, 3(1), 707–710.
https://doi.org/10.1007/s12289-010-0868-z

 14.  Rao, S., Umer, R., Thomas, J., and Cantwell, W. J. Investigation of peel resistance during the fibre placement process. J. Reinf. Plast. Compos., 2016, 35(4), 275–286.
https://doi.org/10.1177/0731684415613634

 15.  Matveev, M. Y., Schubel, P. J., Long, A. C., and Jones, I. A. Understanding the buckling behaviour of steered tows in Automated Dry Fibre Placement (ADFP). Composites: Part A, 2016, 90, 451–456.
https://doi.org/10.1016/j.compositesa.2016.08.014

 16.  Crossley, R. J. Characterisation of Tack for Automated Tape Laying. PhD Thesis, University of Nottingham, 2011.

 17.  Haavajõe, A., Mikola, M., Herranen, H., and Pohlak, M. Manufacturing of steered fiber composite laminate. In Proceedings of 10th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING”, 12–13 May 2015, Tallinn, Estonia (Otto, T, ed.). Tallinn University of Technology, 2015, 21–26.

 18.  Haavajõe, A., Mikola, M., and Pohlak, M. Design and manufacturing of variable angle tow laminate. In Engineering Materials and Tribology. (Hussainova, I. and Veinthal, R., eds), 2016, 59−64. Trans. Tech. Publications Ltd. (Key Engineering Materials; 674).
https://doi.org/10.4028/www.scientific.net/KEM.674.59

 19.  Shvartsman, B. and Majak J. Numerical method for stability analysis of functionally graded beams on elastic foundation. Appl. Math. Model., 2016, 40(5–6), 3713–3719.
https://doi.org/10.1016/j.apm.2015.09.060

 20.  Majak, J., Shvartsman, B. S., Karjust, K., Mikola, M., Haavajõe, A., and Pohlak, M. Convergence theorem for the Haar wavelet based discretization method. Composites, Part B: Engineering, 2015, 80, 321–327.
https://doi.org/10.1016/j.compositesb.2015.06.008

 21.  Majak, J. and Hannus, S. Orientational design of aniso­tropic materials using the Hill and Tsai-Wu strength criteria. Mech. Compos. Mater., 2003, 39(6), 509–520.
https://doi.org/10.1023/B:MOCM.0000010623.38596.3e

 22.  Lellep, J. and Majak, J. Nonlinear constitutive behavior of orthotropic materials. Mech. Compos. Mater., 2000, 36(4), 261–266.
https://doi.org/10.1007/BF02262803

 23.  Aruniit, A., Kers, J., Majak J., Krumme, A., and Tall, K. Influence of hollow glass microspheres on the mechanical and physical properties and cost of particle reinforced polymer composites. Proc. Estonian Acad. Sci., 2012, 61, 160–165.
https://doi.org/10.3176/proc.2012.3.03


Back to Issue