eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Growth of Scenedesmus obliquus under artificial flue gas with a high sulphur concentration neutralized with oil shale ash; pp. 151–158

Full article in PDF format |

Lara Podkuiko, Jüri Olt, Timo Kikas


Oil shale is the main energy resource in Estonia, which generates large amounts of CO2 and waste oil shale ash. Flue gas from oil shale combustion can also contain large amounts of SO2. Microalgae can be used for biological sequestration of carbon from flue gas. In this research, green algae Scenedesmus obliquus were grown with 14% CO2 in 1 L bioreactors. Sulphuric acid was added with a concentration of 500 ppm and 1000 ppm in order to imitate the dissolution of sulphur dioxide from flue gas into the growth medium. Oil shale ash was used to neutralize SO2. Biomass measurements of S. obliquus, carried out every 24 hours for 7 days, were used as a proxy for carbon fixation. The biomass yields of the untreated control and of the treatments were similar (maximum yield 2.9, 3.1, and 3.9 g L–1 for the control, 500 ppm, and 1000 ppm treatment, respectively), suggesting that neither the sulphur nor the ash had an inhibitory effect on algal growth. In fact, the biomass yield was slightly higher in the treatments, which implies that minerals contained in waste ash could be utilized by algae. The calculated CO2 fixation rate was 0.45 g L−1 d−1 for the control, and 0.62 and 0.83 g L−1 d−1 for 500 ppm and 1000 ppm treatment, respectively. Therefore, microalgae can be used for carbon sequestration from flue gas. Further research should be done in order to optimize the growth conditions and maximize carbon fixation.



1. Keskkonnaministeerium. Põlevkivi kasutamise riiklik arengukava 2016–2030 [Estonian national oil shale development plan for 2016–2030]. Tallinn, 2015. RKo_16032016Lisa.pdf (accessed 2017-02-02).

2. Tamm, K., Kuusik, R., Uibu, M., and Kallas, J. Transformations of sulfides during aqueous carbonation of oil shale ash. Energy Procedia, 2013, 37, 5905–5912.

3. Laja, M. Põlevkivituhk, omadused ja käitumine vesikeskkonnas [Oil shale ash, characteristics and behaviour in an aqueous environment]. University of Tartu, 2005 (in Estonian).

4. Eesti Arengufond. “Energimajanduse arengukava aastani 2030” keskkonnamõju strateegiline hindamine [Strategic environmental impact assessment of the “Development plan of the energy sector until 2030”]. 2014 (in Estonian).

5. Eesti Energia: Environmental report, 2014. Eesti Energia, 2015 (accessed 2017-02-02). 6. Lackner, K. S. A guide to CO2 sequestration. Science, 2003, 300, 1677–1678.

7. Wang, B., Li, Y., Wu, N., and Lan, C. Q. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol., 2008, 79, 707–718.

8. Lam, M. K., Lee, K. T., and Mohamed, A. R. Current status and challenges on microalgae-based carbon capture. Int. J. Greenh. Gas Control, 2012, 10, 456–469.

9. Sudhakar, K., Suresh, S., and Premalatha, M. An overview of CO2 mitigation using algae cultivation technology. Int. J. Chem. Res., 2011, 3, 110–117.

10. Ono, E. and Cuello, J. L. Selection of optimal microalgae species for CO2 sequestration. Natl. Conf. Carbon Sequestration, 2003, 1–7.

11. Kumar, K., Banerjee, D., and Das, D. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresource Technol., 2014, 152, 225–233.

12. Zhao, B. and Su, Y. Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew. Sust.. Energy Rev., 2014, 31, 121–132.

13. Christenson, L. and Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv., 2011, 29, 686–702.

14. Bhola, V., Swalaha, F., Ranjith Kumar, R., Singh, M., and Bux, F. Overview of the potential of microalgae for CO2 sequestration. Int. J. Environ. Sci. Technol., 2014, 11, 2103–2118.

15. Cheah, W. Y., Show, P. L., Chang, J.-S., Ling, T. C., and Juan, J. C. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technol., 2014, 184, 190–201.

16. Ronda, S. R., Kethineni, C., Parupudi, L. C. P., Thunuguntla, V. B .S .C., Vemula, S., Settaluri, V. S., et al. A growth inhibitory model with SOx influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere. Bioresource Technol., 2014, 152, 283–291.

17. Directive 2001/81/EC of the European Parliament and of the Council on national emission ceilings for certain atmospheric pollutants. OJ, 2001, L309, 27.11.

18. Uibu, M. and Kuusik, R. Carbon capture and fixation using lime-containing wastes: the influence of aqueous phase composition on Ca dissolution from oil shale ash. Energy Procedia, 2013, 37, 5913–5920.

19. Häsänen, E., Aunela-Tapola, L., Kinnunen, V., Larjava, K., Mehtonen, A., Salmikangas, T., et al. Emission factors and annual emissions of bulk and trace elements from oil shale fueled power plants. Sci. Total Environ., 1997, 198, 1–12.

20. Afkar, E., Ababna, H., and Fathi, A. A. Toxicological response of the green alga Chlorella vulgaris to some heavy metals. Am. J. Environ. Sci., 2010, 6, 230–237.

21. Pérez, P., Fernández, E., and Beiras, R. Fuel toxicity on Isochrysis galbana and a coastal phytoplankton assemblage: growth rate vs. variable fluorescence. Ecotox. Environ. Safe., 2010, 73, 254–261.

22. Djomo, J. E., Dauta, A., Ferrier, V., Narbonne, J. F., Monkiedje, A., Njine, T., et al. Toxic effects of some major polyaromatic hydrocarbons found in crude oil and aquatic sediments on Scenedesmus subspicatus. Water Res., 2004, 38, 1817–1821.

23. Blinova, I., Bityukova, L., Kasemets, K., Ivask, A., Käkinen, A., Kurvet, I., et al. Environmental hazard of oil shale combustion fly ash. J. Hazard. Mater., 2012, 229230, 192–200.

24. Manusadžianas, L., Balkelytė, L., Sadauskas, K., Blinova, I., Põllumaa, L., and Kahru, A. Ecotoxicological study of Lithuanian and Estonian wastewaters: selection of the biotests, and correspondence between toxicity and chemical-based indices. Aquat. Toxicol., 2003, 63, 27–41.

25. Andersen, R. A. Algal Culturing Techniques. Elsevier Academic Press, 2005.

26. Morais, M. G. and Costa, J. A. V. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol., 2007, 129, 439–445.

27. Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv., 2007, 25, 294–306.

28. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. (accessed 2016-10-20).

29. Andersson, I. Catalysis and regulation in Rubisco. J. Exp. Bot., 2008, 59, 1555–1568.

30. Myers, J. Physiology of the algae. Annu. Rev. Microbiol., 1951, 5, 157–180.

31. Cammack, R., Rao, K. K., Bargeron, C. P., Hutson, K. G., Andrew, P. W., and Rogers, L. J. Midpoint redox potentials of plant and algal ferredoxins. Biochem. J., 1977, 168, 205–209.

32. Zhang, L., Happe, T., and Melis, A. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta, 2002, 214, 552–561.

33. Hell, R., Dahl, C., Knaff, D. B., and Leustek, T. (eds). Sulfur Metabolism in Phototrophic Organisms. Advances in Photosynthesis and Respiration, Vol. 27. Dordrecht, Springer, 2008.

34. Giordano, M., Pezzoni, V., and Hell, R. Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. Plant Physiol., 2000, 124, 857–864.

35. Sexton, P. J., Batchelor, W. D., and Shibles, R. Sulfur availability, Rubisco content, and photosynthetic rate of soybean. Crop Sci., 1997, 37, 1801–1806.

36. Li, F. F., Yang, Z. H., Zeng, R., Yang, G., Chang, X., Yan, J.-B., and Hou, Y. L.. Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind. Eng. Chem. Res., 2011, 50, 6496–6502.

37. Tang, D., Han, W., Li, P., Miao, X., and Zhong, J. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technol., 2011, 102, 3071–3076.

38. Ho, S. H., Chen, C. Y., Yeh, K. L., Chen, W.-M., Lin, C.-Y., and Chang, J.-S. Characterization of photosynthetic carbon dioxide fixation ability of indigenous Scenedesmus obliquus isolates. Biochem. Eng. J., 2010, 53, 57–62.

39. Ferreira, C., Ribeiro, A., and Ottosen, L. Possible applications for municipal solid waste fly ash. J. Hazard. Mater., 2003, 96, 201–216.

40. Mittra, B. N., Karmakar, S., Swain, D. K., and Ghosh, B. C. Fly ash – a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel, 2005, 84, 1447–1451.

41. Terasmaa, T. and Sepp, S. Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. 1. The effect on forest soil in a pine stand. Proc. Estonian Acad. Sci. Ecol., 1994, 4, 101–108.

42. Adamson, J., Irha, N., Adamson, K., Steinnes, E., and Kirso, U. Effect of oil shale ash application on leaching behavior of arable soils: an experimental study. Oil Shale, 2010, 27, 250–257.

43. Pittman, J. K., Dean, A. P., and Osundeko, O. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technol., 2011, 102, 17–25.

44. Cheah, W. Y., Ling, T. C., Show, P. L., Juan, J. C., Chang, J.-S., and Lee, D.-J. Cultivation in wastewaters for energy: a microalgae platform. Appl. Energy, 2016, 179, 609–625.

45. Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., and Simões, M. Wastewater treatment to enhance the economic viability of microalgae culture. Environ. Sci. Pollut. Res., 2013, 20, 5096–5105.

46. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., et al. Cultivation of green algae Chlorella sp. in diferent wastewaters from municipal wastewater treatment plant.

Appl. Biochem. Biotechnol., 2010, 162, 1174–1186.

47. Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., and Yuan, Z. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res., 2013, 47, 4294–4302.

48. Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. OJ, L 140/10, 30.5.2002.

49. Working Group Compost – Consulting & Development (Amlinger, F., Pollak, M., and Favoino, E.). Heavy Metals and Organic Compounds from Wastes Used as Organic Fertilisers. Final report. Technical Office for Agriculture, 2004.

50. López, C. V. G., Cerón-García, M. C., Fernández, F. G. A., Bustos, C. S., Chisti, Y., and Sevilla, J. M. F. Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technol., 2010, 101, 7587–7591.

51. Podkuiko, L., Ritslaid, K., Olt, J., and Kikas, T. Review of promising strategies for zero-waste production of the third generation biofuels. Agron. Res., 2014, 12, 373–390.


Back to Issue