ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

On endomorphisms of groups of orders 37–47; pp. 137–150

Full article in PDF format | https://doi.org/10.3176/proc.2017.2.04

Authors
Alar Leibak, Peeter Puusemp

Abstract

It is proved that the finite groups of orders 37–47 are determined by their endomorphism monoids in the class of all groups.


References

1. Alperin, J. L. Groups with finitely many automorphisms. Pacific J. Math., 1962, 12, 1–5.
https://doi.org/10.2140/pjm.1962.12.1

2. Ascione, J. A., Havas, G., and Leedham-Green, C. R. A computer aided classification of certain groups of prime order. Bull. Austral. Math. Soc., 1977, 17, 257–274.
https://doi.org/10.1017/S0004972700010571
https://doi.org/10.1017/S0004972700010467

3. Bors, A. On the dynamics of endomorphisms of finite groups. AAECC, 2016,
https://doi.org/10.1007/s00200-016-0304-9

4. Can finite non-isomorphic groups of the same order have isomorphic endomorphism monoids? (http://math.stackexchange.com/questions/801585) (accessed 12 December 2016).

5. Cayley, A. Desiderata and suggestions. No. 1. The theory of groups. Amer. J. Math., 1878, 1, 50–52.
https://doi.org/10.2307/2369306
https://doi.org/10.2307/2369433

6. Chu, H., Hoshi, A., Hu, S., and Kang, M. Noether’s problem for groups of order 243. J. Algebra, 2015, 442, 233–259.
https://doi.org/10.1016/j.jalgebra.2015.03.010

7. Grigorchuk, R. I. and Mamaghani, M. G. On use of iterates of endomorphisms for constructing groups with specific properties. Mat. Stud., 1997, 8(2), 198–206.

8. James, R., Newman, M. F., and O’Brien, E. A. The groups of order 128. J. Algebra, 1990, 129, 136–158.
https://doi.org/10.1016/0021-8693(90)90244-I

9. Leibak, A. and Puusemp, P. On endomorphisms of groups of order 36. Proc. Estonian Acad. Sci., 2016, 65, 237–254.
https://doi.org/10.3176/proc.2016.3.06

10. O’Brien, E. A. The groups of order 256. J. Algebra, 1991, 143, 219–235.
https://doi.org/10.1016/0021-8693(91)90261-6

11. O’Brien, E. A. and Vaughan-Lee, M. R., The groups with order p7 for odd prime p. J. Algebra, 2005, 292, 243–258.
https://doi.org/10.1016/j.jalgebra.2005.01.019

12. Puusemp, P. Idempotents of the endomorphism semigroups of groups. Acta Comment. Univ. Tartuensis, 1975, 366, 76–104 (in Russian).

13. Puusemp, P. Endomorphism semigroups of generalized quaternion groups. Acta Comment. Univ. Tartuensis, 1976, 390, 84–103 (in Russian).

14. Puusemp, P. On endomorphism semigroups of symmetric groups. Acta Comment. Univ. Tartuensis, 1985, 700, 42–49 (in Russian).

15. Puusemp, P. An embedding theorem for finite groups. Proc. Estonian Acad. Sci. Phys. Math., 1997, 46, 235–240.

16. Puusemp, P. A characterization of divisible and torsion Abelian groups by their endomorphism semigroups. Algebras Groups Geom., 1999, 16, 183–193.

17. Puusemp, P. Characterization of a semidirect product of groups by its endomorphism semigroup. In Proceedings of the International Conference on Semigroups, Braga, June 18–23, 1999 (Smith, P., Giraldes, E., and Martins, P., eds). World Scientific, Singapore, Inc., 2000, 161–170.
ttps://doi.org/10.1142/9789812792310_0013

18. Puusemp, P. On the definability of a semidirect product of cyclic groups by its endomorphism semigroup. Algebras Groups Geom., 2002, 19, 195–212.

19. Puusemp, P. Groups of order 24 and their endomorphism semigroups. Fundam. Prikl. Mat., 2005, 11(3), 155–172 (in Russian).

20. Puusemp, P. Groups of order less than 32 and their endomorphism semigroups. J. Nonlinear Math. Phys., 2006, 13, Supplement, 93–101.

21. Puusemp, P. and Puusemp, P. On endomorphisms of groups of order 32 with maximal subgroups C4_C2_C2. Proc. Estonian Acad. Sci., 2014, 63, 105–120.
https://doi.org/10.3176/proc.2014.2.01
https://doi.org/10.3176/proc.2014.4.01

22. Puusemp, P. and Puusemp, P. On endomorphisms of groups of order 32 with maximal subgroupsC8_C2. Proc. Estonian Acad. Sci., 2014, 63, 355–371.
https://doi.org/10.3176/proc.2014.2.01
https://doi.org/10.3176/proc.2014.4.01

23. Puusemp, P. and Puusemp, P. On endomorphisms of groups of order 32 with maximal subgroups C4 2 or C2 4 . Proc. Estonian Acad. Sci., 2016, 65, 1–14.
https://doi.org/10.3176/proc.2016.1.04

24. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.6; 2014 (http://www.gap-system.org) (accessed 12 December 2016).


Back to Issue