eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Complete solution of the Marchenko equation for a simple model system; pp. 267–283
PDF | doi: 10.3176/proc.2016.3.07

Matti Selg

An example of full solution of the inverse scattering problem on the half line (from 0 to ∞) is presented. For this purpose, a simple analytically solvable model system (Morse potential) is used, which is expected to be a reasonable approximation to a real potential. First one calculates all spectral characteristics for the fixed model system. This way one gets all the necessary input data (otherwise unobtainable) to implement powerful methods of the inverse scattering theory. In this paper, the multi-step procedure to solve the Marchenko integral equation is described in full detail. Several important analytic properties of the Morse potential are unveiled. For example, a simple analytic algorithm to calculate the phase shift is derived.


  1. Levinson, N. On the uniqueness of the potential in a Schrödinger equation for a given asymptotic phase. K. Danske Vidensk. Selsk. Mat-fys. Medd., 1949, 25, 1–29.

  2. Levinson, N. The inverse Sturm–Liouville problem. Mat. Tidsskr. B, 1949, 13, 25–30.

  3. Bargmann, V. Remarks on the determination of a central field of force from the elastic scattering phase shifts. Phys. Rev., 1949, 75, 301–303.

  4. Bargmann, V. On the connection between phase shifts and scattering potential. Rev. Mod. Phys., 1949, 21, 488–493.

  5. Gel¢fand, I. M. and Levitan, B. M. On the determination of a differential equation from its spectral function. Izv. Akad. Nauk SSSR. Ser. Mat., 1951, 15, 309–360 (in Russian) [Am. Math. Soc. Transl. (ser. 2), 1955, 1, 253].

  6. Jost, R. and Kohn, W. Construction of a potential from a phase shift. Phys. Rev., 1952, 87, 977–992.

  7. Jost, R. and Kohn, W. Equivalent potentials. Phys. Rev., 1952, 88, 382–385.

  8. Marchenko, V. A. Certain questions of the theory of second-order differential operators. Dokl. Akad. Nauk SSSR, 1950, 72, 457–460 (in Russian).

  9. Marchenko, V. A. On the reconstruction of the potential energy from phases of the scattered waves. Dokl. Akad. Nauk SSSR, 1955, 104, 695–698 (in Russian).

10. Krein, M. G. Solution of the inverse Sturm–Liouville problem. Dokl. Akad. Nauk SSSR, 1951, 76, 21–24 (in Russian).

11. Krein, M. G. On the theory of accelerants and S-matrices of canonical form. Dokl. Akad. Nauk SSSR, 1956, 111, 1167–1180 (in Russian).

12. Chadan, K. and Sabatier, P. C. Inverse Problems in Quantum Scattering Theory. 2nd edn, Springer, New York, 1989.

13. Hellmann, R., Bich, E., and Vogel, E. Ab initio potential energy curve for the neon atom pair and thermophysical properties of the dilute neon gas. I. Neon–neon interatomic potential and rovibrational spectra. Mol. Phys., 2008, 106, 133–140.

14. Morse, P. M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev., 1929, 34, 57–64.

15. Wüest, A. and Merkt, F. Determination of the interaction potential of the ground electronic state of Ne2 by high-resolution vacuum ultraviolet laser spectroscopy. J. Chem. Phys., 2003, 118, 8807–8812.

16. Gendenshtein, L. Derivation of exact spectra of the Schrödinger equation by means of supersymmetry. Pis¢ ma v ZETF, 1983, 38, 299–302 (in Russian) [JETP Lett., 1983, 38, 356–359].

17. Selg, M. Numerically complemented analytic method for solving the time-independent onedimensional Schrödinger equation. Phys. Rev. E, 2001, 64, 056701-12.

18. Selg, M. Observable quasi-bound states of the H2 molecule. J. Chem. Phys., 2012, 136, 114113-12.

19. Edwards, H. M. Riemann’s Zeta Function. Chapter 7. Academic Press, New York, 1974.

20. Agranovitz, Z. S. and Marchenko, V. A. The Inverse Problem of Scattering Theory. Gordon and Breach, New York, 1963.

21. Marchenko, V. A. Sturm–Liouville Operators and Applications. Birkhäuser, Basel, 1986.

22. Selg, M. Reference potential approach to the inverse problem in quantum mechanics. Mol. Phys., 2006, 104, 2671–2684.

23. Bateman, H. and Erdélyi, A. Higher Transcendental Functions. Vol. 1. Mc Graw-Hill, New York, 1953.

24. Chebotarev, L. V. Extensions of the Bohr–Sommerfeld formula to double-well potentials. Am. J. Phys., 1998, 66, 1086–1095.

25. Selg, M. Visualization of rigorous sum rules for Franck–Condon factors: spectroscopic applications to Xe2. J. Mol. Spectrosc., 2003, 220, 187–200.

26. Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions. 10th printing, Dover, New York, 1972.

27. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical Recipes in Fortran 77, The Art of Scientific Computing, Vol. 1. 2nd edn, Cambridge University Press, Cambridge, 1997.

28. Delves, L. M. and Mohamed, J. L. Computational Methods for Integral Equations. Cambridge University Press, Cambridge, 1985.

29. Householder, A. S. Unitary triangularization of a nonsymmetric matrix. J. ACM, 1958, 5, 339–342.

30. Abraham, P. B. and Moses, H. E. Changes in potentials due to changes in the point spectrum: anharmonic oscillators with exact solutions. Phys. Rev. A, 1980, 22, 1333–1340.

31. Pursey, D. L. New families of isospectral Hamiltonians. Phys. Rev. D, 1986, 33, 1048–1055.

32. Eckhaus, W. and van Harten, A. The Inverse Scattering Transformation and the Theory of Solitons. North-Holland, Amsterdam, 1981.

33. Ablowitz, M. J. and Clarkson, P. A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge, 1991.

Back to Issue