eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Ionic liquids as solvents for making composite materials from cellulose; pp. 255–266
PDF | doi: 10.3176/proc.2016.3.09

Fred Elhi, Tiina Aid, Mihkel Koel

Some imidazolium-based ionic liquids (ILs) are able to dissolve microcrystalline cellulose to form 10 wt% solutions. This allows easy production of cellulose composite materials by mixing the respective solutions. The purpose of this work was to make an environmentally friendly novel material using cellulose as a binder to be an alternative for classical binders in electrically conductive materials. Eleven ILs were used to dissolve cellulose. The ILs included two ILs previously untested for this application. Monofilaments composed of three types of cellulose and carbon aerogels were prepared. Solutions of cellulose and carbon aerogels were made into electrically conducting materials. Regeneration of cellulose and composites from ILs was performed using water, ethanol, and acetone. From those antisolvents water proved to be the most effective. The solutions were made into films and fibre extrusions. The used ILs were successfully recovered and reused after regeneration of cellulose. This further strengthened the belief that dissolving cellulose with ionic liquids is a ‘green process’.


Al-Muhtaseb, S. A. and Ritter, J. A. 2003. Preparations and properties of resorcinol–formaldehyde organic and carbon gels. Adv. Mater., 15(2), 101–114.

Amaral-Labat, G., Szczurek, A., Fierro, V., Pizzi, A., Masson, E., and Celzard, A. 2012. “Blue glue” – a new precursor of carbon aerogels. Micropor. Mesopor. Mater., 158, 272–280.

Brandt, A., Gräsvik, J., Hallett, J. P., and Welton, T. 2013. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem., 15, 550–583.

Carroll, A. and Somerville, C. 2009. Cellulosic biofuels. Annu. Rev. Plant Biol., 60, 165–182.

Ding, Z.-D., Chi, Z., Gu, W.-X., Gu, S.-M., Liu, J.-H., and Wang, H.-J. 2012. Theoretical and experimental investigation on dissolution and regeneration of cellulose in ionic liquid. Carbohyd. Polym., 89, 1, 7–16.

Domínguez de María, P. 2013. Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, dis­tillable and bio-based ionic liquids. J. Chem. Technol. Biot., 89, 11–18.

ElKhatat, A. M. and Al-Muhtaseb, S. A. 2011. Advances in tailoring resorcinol–formaldehyde organic and carbon gels. Adv. Mater., 23, 2887–2903.

El Seoud, O. A. E., da Silva, V. C., Possidonio, S., Casarano, R., Arȇas, E. P. G., and Gimenes, P. 2011. Microwave-assisted derivatization of cellulose, 2 – The surprising effect of the structure of ionic liquids on the dis­solution and acylation of the biopolymer. Macromol. Chem. Physic., 212(23), 2541–2550.

Fukaya, Y., Hayashi, K., Kim, S. S., and Ohno, H. 2010. Design of polar ionic liquids to solubilize cellulose without heating. In Cellulose Solvents: For Analysis, Shaping and Chemical Modification (Liebert, T. F., Heinze, T. J., and Edgar, K. J., eds), pp. 55–66. ACS Symposium Series, Vol. 1033. Washington D.C.

Fukushima, T., Kosaka, A., Ishimura, Y., Yamamoto, T., Takigawa, T., Ishii, N., and Aida, T. 2003. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, 300, 2072–2074.

Fukushima, T., Asaka, K., Kosaka, A., and Aida, T. 2005. Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Edit., 44, 2410–2413.

Gilbert, R. D. (ed.). 1994. Cellulosic Polymers, Blends and Composites. Hanser Publications, Munich.

Gupta, K. M., Hu, Z. Q., and Jiang, J. 2013a. Molecular insight into cellulose regeneration from a cellulose/ionic liquid mixture: effects of water concentration and tem­pera­ture. RSC Adv., 3, 4425.

Gupta, K. M., Hu, Z., and Jiang, J. 2013b. Cellulose regeneration from a cellulose/ionic liquid mixture: the role of anti-solvents. RSC Adv., 3, 12794–12801.

Ha, S. H., Mai, N. L., An, G., and Koo, Y.-M. 2011. Micro­wave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresource Technol., 102(2), 1214–1219.

Hamedi, M. M., Hajian, A., Fall, A. B., Håkansson, K., Salajkova, M., Lundell, F., et al. 2014. Highly con­ducting, strong nanocomposites based on nano­cellulose-assisted aqueous dispersions of single-wall carbon nanotubes. ACS Nano, 8, 2467–2476.

Hon, D. N.-S. and Shiraishi, N. (eds). 2000. Wood and Cellulosic Chemistry. CRC Press, Boca Raton.

Janesko, B. G. 2011. Modeling interactions between ligno­cellulose and ionic liquids using DFT-D. Phys. Chem. Chem. Phys., 13, 11393–11401.

Jin, H., Zha, C., and Gu, L. 2007. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohyd. Res., 342, 6, 851–858.

Kennedy, J. F. (ed.). 1987. Wood and Cellulosics: Industrial Utilization, Biotechnology, Structure and Properties. Ellis Horwood, Chichester.

Kennedy, J. F., Phillips, G. O., and Williams, P. A. (eds). 1990. Cellulose Sources and Exploitation: Industrial Utilisation Biotechnology and Physico-Chemical Properties. Ellis Horwood, London.

Khalil, H. P. S. A., Bhat, A. H., and Yusra, A. F. I. 2012. Green composites from sustainable cellulose nano­fibrils: a review. Carbohyd. Polym., 87, 963–979.

Klemm, D., Heublein, B., Fink, H.-P., and Bohn, A. 2005. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Edit., 44, 3358–3393.

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., and Dorris, A. 2011. Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Edit., 50, 5438–5466.

Kosan, B., Michels, C., and Meister, F. 2008. Dissolution and forming of cellulose with ionic liquids. Cellulose, 15, 59–66.

Kruusamäe, K., Kaasik, F., Punning, A., and Aabloo, A. 2013. Self-sensing ionic electromechanically active actuator with patterned carbon electrodes. P. Soc. Photo-Opt. Ins., 8687, 1–8.

Lan, W., Liu, C.-F., Yue, F.-X., and Sun, R.-C. 2013. Rapid dissolution of cellulose in ionic liquid with different methods. In Cellulose Fundamental Aspects (van de Ven, T. and Godbout, L., eds), pp. 179–196. InTech, Rijeka.

Lavoine, N., Desloges, I., Dufresne, A., and Bras, J. 2012. Microfibrillated cellulose – its barrier properties and applications in cellulosic materials: a review. Carbohyd. Polym., 90, 2, 735–764.

Liebert, T. 2010. Cellulose solvents – remarkable history, bright future. In Cellulose Solvents: For Analysis, Shaping and Chemical Modification (Liebert, T. F., Heinze, T., and Edgar, K. J., eds), pp. 3–54. ACS Symposium Series, Vol. 1033. Washington DC.

Luo, X. and Zhang, L. 2010. Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J. Chromatogr. A, 1217(38), 5922–5929.

Maldonado-Hódar, F. J. 2013. Advances in the development of nanostructured catalysts based oncarbon gels. Catal. Today, 218–219, 43–50.

Miao, C. and Hamad, W. Y. 2013. Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose., 20, 2221–2262.

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., and Young­blood, J. 2011. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 40, 3941–3994.

Nakagaito, A. N. and Yano, H. 2014. Cellulose-nanofiber-based materials. In Cellulose Based Composites: New Green Nanomaterials (Hinestroza, J. and Netravali, A. N., eds), pp. 3–26. Wiley-VCH, Weinheim.

Néouze, M.-A., Bideau, J. L., Gaveau, P., Bellayer, S., and Vioux, A. 2006. Ionogels, new materials arising from the confinement of ionic liquids within silica-derived networks. Chem. Mater., 18(17), 3931–3936.

Pérez-Caballero, F., Peikolainen, A.-L., Uibu, M., Kuusik, R., Volobujeva, O., and Koel, M. 2008. Preparation of carbon aerogels from 5-methylresorcinol–formal­dehyde gels. Micropor. Mesopor. Mater., 108, 230–236.

Pinkert, A., Marsh, K. N., Pang, S., and Staiger, M. P. 2009. Ionic liquids and their interaction with cellulose. Chem. Rev., 109(12), 6712–6728.

Sannigrahi, P. and Ragauskas, A. J. 2013. Fundamentals of biomass pretreatment by fractionation. In Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals (Wyman, C. E., ed.), pp. 201–222. John Wiley & Sons, New Jersey.

Sashina, E. S., Kashirskii, D. A., Janowska, G., and Zaborski, M. 2013. Thermal properties of 1-alkyl-3-methyl­pyridinium halide-based ionic liquids. Thermochim. Acta, 568, 185–188.

Shi, Z., Phillips, G. O., and Yang, G. 2013. Nanocellulose electroconductive composites. Nanoscale, 5, 8, 3194–3201.

Swatloski, R. P., Spear, S. K., Holbrey, J. D., and Rogers, R. D. 2002. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc., 124, 18, 4974–4975.

Vitz, J., Erdmenger, T., and Schubert, U. S. 2010. Imidazolium based ionic liquids as solvents for cellulose chemistry. In Cellulose Solvents: For Analysis, Shaping and Chemical Modification (Liebert, T. F., Heinze, T., and Edgar, K. J., eds), pp. 299–317. ACS Symposium Series, Vol. 1033, Washington DC.

Wang, J., Zheng, Y., and Zhang, S. 2010. The application of ionic liquids in dissolution and separation of ligno­cellulose. In Clean Energy Systems and Experiences (Eguchi, K., ed.), pp. 71–84. Sciyo.

Wang, H., Gurau, G., and Rogers, R. D. 2012. Ionic liquid processing of cellulose. Chem. Soc. Rev., 41, 1519–1537.

Weingärtner, H. 2008. Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew. Chem. Int. Edit., 47, 654–670.

Wu, D., Wu, B., Zhang, Y. M., and Wang, H. P. 2010. Density, viscosity, refractive index and conductivity of 1-allyl-3-methylimidazolium chloride + water mixture. J. Chem. Eng. Data, 55, 621–624.

Yamato, K., Mukai, K., Hata, K., and Asaka, K. 2012. Fast-moving bimorph actuator based on electrochemically treated millimeter-long carbon nanotube electrodes and ionic liquid gel. International Journal of Smart and Nano Materials, 3, 4, 263–274.

Yu, L., Dean, K., and Li, L. 2009. Biodegradable polymer blends and composites from renewable resources. Prog. Polym. Sci., 31, 576–602.

Zavrel, M., Bross, D., Funke, M., Büchs, J., and Spiess, A. C. 2009. High-throughput screening for ionic liquids dis­solving (ligno-)cellulose. Bioresource Technol., 100(9), 2580–2587.

Zhang, S., Li, F.-X., and Yu, J.-Y. 2011. Kinetics of cellulose regeneration from cellulose-NaOH/thiourea/urea/H2O system. Cell. Chem. Technol., 45, 593–604.

Zhao, H., Baker, G. A., Song, Z., Olubajo, O., Crittle, T., and Peters, D. 2008. Designing enzyme-compatible ionic liquids that can dissolve carbohydrates. Green Chem., 10, 696–705.

Zhu, S., Wu, Y., Chen, Q., Ziniu, Y., Wang, C., Jin, S., et al. 2006. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem., 8, 325–327.

Zubizarreta, L., Arenillas, A., Domínguez, A., Menéndez, J. A., and Pis, J. J. 2007. Development of microporous carbon xerogels by controlling synthesis conditions. J. Non-Cryst. Solids, 354, 817–825.

Back to Issue