eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Significant impact of the Rh blood group and gender on influenza infection in Estonia; pp. 195–204

Full article in PDF format | doi: 10.3176/proc.2016.3.04

Liina Kärdi, Anu Nutt, Jaanus Suurväli, Siim Erik Siimut, Diivi Põdersoo, Tiiu Saar, Toomas Tiivel, Sirje Rüütel Boudinot


To get an insight into the epidemics of influenza caused by the pandemic A(H1N1)pdm09 virus in Estonia, titres of anti-H1N1 antibodies were determined from 530 blood donor sera and from 355 pig sera collected during the second post-pandemic year (2010–2011) in Estonia. The results indicate that A(H1N1)pdm09 was well spread among the Estonian population during the second year of spreading. The median antibody titres of A(H1N1)pdm09 were higher in the sample of Estonian men than women, but the reason for this is unclear. The impact of blood group, age, and gender on the titre of anti-H1N1 antibodies in human serum samples was studied. A significant difference was observed between the RhD donor groups: the RhD+ group had a higher antibody titre than the RhD– group. A significant influence of the RhCcEc system was observed, the Ccee combination promoting the highest antibody titre. These observations suggest that viral infections might exert substantial pressure on the evolution of human blood groups. Pig serum samples from half of the Estonian pig farms were tested, indicating that the A(H1N1)pdm09 virus had infected animals in two-thirds of the farms. Altogether, our study shows that a virus serologically similar to the A(H1N1)pdm09 virus was prevalent in Estonia in both human and pig populations during 2010–2011, and reveals important factors influencing the serum titre of antibodies to this virus.


  1. Trauer, J. M., Bandaranayake, D., Booy, R., et al. Sero­epidemiologic effects of influenza A(H1N1)pdm09 in Australia, New Zealand, and Singapore. Emerg. Infect. Dis., 2013, 19, 92–101.

  2. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team, Dawood, F. S., Jain, S., et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. New Engl. J. Med., 2009, 360, 2605–2615.

  3. Saar, R., Põdersoo, D., Järvelaid, M., et al. The Estonian H1N1 influenza 2009 outbreak was highly under­estimated. Proc. Estonian Acad. Sci., 2012, 61, 320–329.

  4. WHO. WHO guidelines for pharmacological management of pandemic (H1N1) 2009 influenza and other influenza viruses. swineflu/h1n1_use_antivirals_20090820/en/ (accessed 2014-09-15).

  5. Aho, K., Pyhälä, R., and Visakorpi, R. ABO associated genetic determinant in H1N1 influenza. Tissue Antigens, 1980, 16, 310–313.

  6. Sominina, A. A., Tsubalova, L. M., Karpova, L. S., et al. Genetic predisposition to latent influenza A virus in children with blood type B(III) as a possible cause of new epidemiologic strains in the countries of South-Eastern Asia. Vestn. Ross. Akad. Med. Nauk, 1994, 21–24 (in Russian).

  7. McDonald, J. C. and Zuckerman, A. J. ABO blood groups and acute respiratory virus disease. Brit. Med. J., 1962, 2, 89–90.

  8. Potter, C. W. and Schild, G. C. The incidence of HI antibody to Influenza virus A2/Singapore/1/57 in individuals of blood groups A and O. J. Immunol., 1967, 98, 1320–1325.

  9. Frolov, V. K., Sokhin, A. A., Sotnik, A. Y., et al. Poly­morphism of human blood groups and incidence of influenza A/Hong Kong (H3N2). Acta Virol., 1975, 19, 406–412.

10. Mackenzie, J. S. and Fimmel, P. J. The effect of ABO blood groups on the incidence of epidemic influenza and on the response to live attenuated and detergent split influenza virus vaccines. J. Hyg. (Lond.), 1978, 80, 21–30.

11. Tyrrell, D. A., Peto, M., and King, N. Serological studies on infections by respiratory viruses of the inhabitants of Tristan da Cunha. J. Hyg. (Lond.), 1967, 65, 327–341.

12. Lebiush, M., Rannon, L., and Kark, J. D. The relationship between epidemic influenza A(H1N1) and ABO blood group. J. Hyg. (Lond.), 1981, 87, 139–146.

13. Watkin, I. J., Tills, D., and Heath, R. B. Studies of the genetic susceptibility of individuals to infection with influenza viruses. Humangenetik, 1975, 30, 75–79.

14. Naĭkhin, A. N., Katorgina, L. G., Tsaritsyna, I. M., et al. Indicators of collective immunity to influenza depending on the blood group and sex of the population. Vopr. Virusol., 1989, 34, 419–423 (in Russian).

15. Avent, N. D. and Reid, M. E. The Rh blood group system: a review. Blood, 2000, 95, 375–387.

16. Flegel, W. A. Molecular genetics of RH and its clinical application. Transfus. Clin. Biol., 2006, 13, 4–12.

17. Mankelow, T. J., Satchwell, T. J., and Burton, N. M. Refined views of multi-protein complexes in the erythrocyte membrane. Blood Cells Mol. Dis., 2012, 49, 1–10.

18. Westhoff, C. M. The Rh blood group system in review: a new face for the next decade. Transfusion (Paris), 2004, 44, 1663–1673.

19. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2013.

20. Nokireki, T., Laine, T., London, L., et al. The first detection of influenza in the Finnish pig population: a retrospective study. Acta Vet. Scand., 2013, 55, 69.

21. Grøntvedt, C. A., Er, C., Gjerset, B., et al. Influenza A(H1N1)pdm09 virus infection in Norwegian swine herds 2009/10: the risk of human to swine trans­mission. Prev. Vet. Med., 2013, 110, 429–434.

22. Colin, Y., Chérif-Zahar, B., Le Van Kim, C., et al. Genetic basis of the RhD-positive and RhD-negative blood group polymorphism as determined by Southern analysis. Blood, 1991, 78, 2747–2752.

23. Chou, S. T. and Westhoff, C. M. The Rh and RhAG blood group systems. Immunohematology. Journal of Bood Group Serology and Education, 2010, 26, 178–186.

24. Owen, J., Punt, J., Stranford, S. A., Jones, P. P., and Kuby, J. Kuby Immunology. 7th ed. W. H. Freeman and Company, New York, 2013.

25. Coudeville, L., Andre, P., Bailleux, F., et al. A new approach to estimate vaccine efficacy based on immunogenicity data applied to influenza vaccines administered by the intradermal or intramuscular routes. Hum. Vaccin., 2010, 6, 841–848.

26. Estonian Health Board. Hinnang 2010/2011 gripihooajale. 2011 (accessed 2014-09-15) (in Estonian).

27. Estonian Health Board. Hinnang 2009/2010 gripihooajale. 2010 (accessed 2014-09-15) (in Estonian).

28. Medina, R. A., Manicassamy, B., Stertz, S., et al. Pandemic 2009 H1N1 vaccine protects against 1918 Spanish influenza virus. Nat. Commun., 2010, 1, 28.

29. Kilbourne, E. D. Influenza pandemics of the 20th century. Emerg. Infect. Dis., 2006, 12, 9–14.

30. Bowman, A. S., Nolting, J. M., Nelson, S. W., and Slemons, R. D. Subclinical influenza virus A infections in pigs exhibited at agricultural fairs, Ohio, USA, 2009–2011. Emerg. Infect. Dis., 2012, 18, 1945–1950.

31. Aaver, E. Etiology of Swine Influenza and Concepts of Fight with it in Estonia. Ministry of Agriculture of Estonia, 1957 (in Russian).

32. Oliveira, W., Carmo, E., Penna, G., et al. Pandemic H1N1 influenza in Brazil: analysis of the first 34,506 notified cases of influenza-like illness with severe acute respiratory infection (SARI). Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull., 2009, 14, 17–22.

33. Influenza A(H1N1)v investigation teams, Levy-Bruhl, D., and Vaux, S. Modified surveillance of influenza A(H1N1)v virus infections in France. Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull., 2009, 14, 19276.

34. Xiao, H., Lu, S., Ou, Q., et al. Hospitalized patients with novel influenza A (H1N1) virus infection: Shanghai, June–July 2009. Chin. Med. J. (Engl.), 2010, 123, 401–405.

35. Ling, L. M., Chow, A. L., Lye, D. C., et al. Effects of early oseltamivir therapy on viral shedding in 2009 pandemic influenza A (H1N1) virus infection. Clin. Infect. Dis., 2010, 50, 963–969.

36. Cao, B., Li, X.-W., Mao, Y., et al. Clinical features of the initial cases of 2009 pandemic influenza A (H1N1) virus infection in China. New Engl. J. Med., 2009, 361, 2507–2517.

37. Daniels, G. The molecular genetics of blood group poly­morphism. Transpl. Immunol., 2005, 14, 143–153.

38. Nyström, K., Le Gall-Reculé, G., Grassi, P., et al. Histo-blood group antigens act as attachment factors of rabbit hemorrhagic disease virus infection in a virus strain-dependent manner. PLoS Pathog., 2011, 7, e1002188.

39. Niedźwiedzka-Rystwej, P. and Deptuła, W. Non-specific immunity in rabbits infected with 10 strains of the rabbit haemorrhagic disease virus with different bio­logical properties. Cent. Eur. J. Biol., 2010, 5, 613–632.

40. Vojvodić, S. Inhibitorna aktivnost M i N krvnogrupnih antigena u reakciji inhibicije virusne hemaglutinacije sa virusom influence [Inhibitory activity of blood group antigens M and N in inhibition of virus hemag­glutination reactions of influenza viruses]. Med. Pregl., 2000, 53, 7–14 (in Croatian).

41. Smith, D. M., Newhouse, M., Naziruddin, B., and Kresie, L. Blood groups and transfusions in pigs. Xeno­transplantation, 2006, 13, 186–194.

Back to Issue