ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Effect of basalt and silica additives on erosive wear resistance of cast ceramics; pp. 144–151

Full article in PDF format | doi: 10.3176/proc.2016.2.05

Authors
Janis Baronins, Maksim Antonov, Roman Ivanov, Volodymyr Shuliak, Irina Hussainova

Abstract

This paper focuses on the erosive wear behaviour of cast ceramics with added basalt (fibres, flakes, and powder) and silica (fine and coarse powder). The objective was to obtain inexpensive cast ceramic compositions with improved erosive wear resistance, which can be useful in the production of supporting and/or protective elements for applications in erosive conditions at room and elevated temperatures. Three commercially available cast ceramics (based on SiO2, Al2O3, and ZrO2) without reinforce­ment as well as reinforced by additives and composites based on liquid glass with additives, were produced and are compared in this work. The obtained samples were assessed for performance in erosive media (particle velocity 20 m×s–1; impact angle 30°; temperature 20, 300, and 600 °C) using a high temperature centrifugal erosion tester. Use of the reinforcing additives increased the wear resistance of the obtained commercial composites by up to 54%. Reinforced cast ceramic based on liquid glass exhibited an up to 73% lower wear rate as compared to a sample of commercially available ceramic at temperatures up to 600 °C.


References

  1. Ramírez-Rico, J. and Martínez-Fernández, J. Comprehensive Hard Materials. Elsevier, 2014.

  2. Palmer, D. S., Barco, M. T., Pelleu, G. B., and McKinney, J. E. Wear of human enamel against a commercial castable ceramic restorative material. J. Prosthet. Dent., 1991, 65(2), 192–195.
http://dx.doi.org/10.1016/0022-3913(91)90161-O

  3. Dong, C., Zuo-ming, C., and Qiang, Z. Analysis of several test methods about heat insulation capabilities of ceramic thermal barrier coatings. Phys. Procedia, 2013, 50, 248–252.
http://dx.doi.org/10.1016/j.phpro.2013.11.039

  4. Roman, R., Hernandez, M., Ibarra, A., Vila, R., Molla, J., Martin, P., and Gonzalez, M. The effect of carbon additives on the dielectric behaviour of alumina ceramics. Acta Mater., 2006, 54(10), 2777–2782.
http://dx.doi.org/10.1016/j.actamat.2006.02.016

  5. Miller, F. A. and Johnson, A. E. (inventors). Artificial bones and methods of making same. US patent US8568148 B2. Pacific Research Laboratories, Inc. 29 Oct. 2013.

  6. Jana, B. D. and Stack, M. M. Modelling impact angle effects on erosion–corrosion of pure metals: con­struction of materials performance maps. Wear, 2005, 259(1–6), 243–255.
http://dx.doi.org/10.1016/j.wear.2005.02.012

  7. Hussainova, I. Microstructural design of ceramic–metal composites for tribological applications. Key Eng. Mat., 2007, 334335, 125–128.
http://dx.doi.org/10.4028/www.scientific.net/KEM.334-335.125

  8. Wang, X., Fang, M., Zhang, L.-C., Ding, H., Liu, Y.-G., Huang, Z., et al. Solid particle erosion of alumina ceramics at elevated temperature. Mater. Chem. Phys., 2013, 139(2–3), 765–769.
http://dx.doi.org/10.1016/j.matchemphys.2013.02.029

  9. Antonov, M. and Hussainova, I. Experimental setup for testing and mapping of high temperature abrasion and oxidation synergy. Wear, 2009, 267(11), 1798–1803.
http://dx.doi.org/10.1016/j.wear.2009.01.008

10. Parthasarathy, T. A., Kerans, R. J., Chellapilla, S., and Roy, A. Analysis of ceramics toughened by non-conventional fiber reinforcement. Mater. Sci. Eng. A, 2007, 443(1–2), 120–131.
http://dx.doi.org/10.1016/j.msea.2006.09.056

11. Hussainova, I., Antonov, M., and Voltsihhin, N. Assessment of zirconia doped hardmetals as tribomaterials. Wear, 2011, 271(9–10), 1909–1915.

12. Fiore, V., Scalici, T., Di Bella, G., and Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng., 2015, 74, 74–94.

13. Makhova, M. F. Crystallization of basalt fibres. Glass Ceram.+, 1968, 25(11), 672–674.

14. Otselot (main page). http://otselot.com/index.php/ru/ (accessed 20.03.2015).

15. Malin, K. М. (ed.). Spravochnik sernokislotchika [Handbook of Sulphuric Acid]. 2nd ed. Khimiya, Moscow, 1971 (in Russian).

16. Ottawa, IL – U.S. Silica Locations. http://www.ussilica.com/ locations/ottawa-il (accessed 17.03.2015).

17. Sodium hexafluorosilicate, 99+%. https://www.alfa.com/en/ catalog/69106 (accessed 17.03.2015).

18. Ignatovich, L. and Dubovskaya, L. Influence of the interaction of hardener and mineral binding the strength of composite. http://www.rusnauka.com/9_NND_2013/ Chimia/2_132360.doc.htm (accessed 17.03.2015).

19. Zikin, A., Antonov, M., Hussainova, I., Katona, L., and Gavrilović, A. High temperature wear of cermet particle reinforced NiCrBSi hardfacings. Tribol. Int., 2013, 68, 45–55.

20. Kleis, I. and Kulu, P. Solid Particle Erosion. Springer, London, 2008.

21. Subasri, R. and Näfe, H. Phase evolution on heat treatment of sodium silicate water glass. J. Non. Cryst. Solids, 2008, 354(10–11), 896–900.


Back to Issue