eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Wear resistance of HVOF sprayed coatings from mechanically activated thermally synthesized Cr3C2–Ni spray powder; pp. 101–106
PDF | doi: 10.3176/proc.2016.2.10

Heikki Sarjas, Priit Kulu, Kristjan Juhani, Mart Viljus, Ville Matikainen, Petri Vuoristo

In the current study a Cr3C2–Ni spray powder was produced by mechanically activated thermal synthesis. The following aspects were studied: (a) production and characteristics of spray powders, (b) spraying and characteristics of coatings by HVOF, and (c) abrasive wear resistance. A HVOF spray system Diamond Jet Hybrid 2700 (propane hybrid gun from Sulzer Metco) was used for deposition. Coating thickness was approximately 350–400 μm. The structure and composition of the coatings were determined by SEM and the phase composition by XRD methods. Coating surface hardness and microhardness in the cross-section were measured. Abrasive rubber-wheel wear (ARWW) and abrasive erosive wear (AEW) were tested. The wear resistance of the coatings produced from an experimental powder was comparable to that of a similar commercial one.



  1. Dorfman, M. and Sharma, A. Challenges and strategy for growth of thermal spray markets: the six-pillar plan. J. Therm. Spray Techn., 2013, 22, 559–563.

  2. Kennametal. (accessed 25.02.2015).

  3. Wielage, B., Wank, A., Pokhmurska, H., Grund, T., Rupprecht, C., Reisel, G., and Friesen, E. Develop­ment and trends in HVOF spraying technology. Surf. Coat. Tech., 2006, 201, 2032–2037.

  4. Vernhes, L., Lee, D. A, Poirier, D., Li, D., and Klemberg-Sapieha, J. E. HVOF coating case study for power plant process control ball valve application. J. Therm. Spray Techn., 2013, 22, 1184–1192.

  5. Sahraoui, T., Fenineche, N.-E., Montavon, G., and Coddet, C. Structure and wear behaviour of HVOF sprayed Cr3C2–NiCr and WC–Co coatings. Mater. Design, 2003, 24, 309–313.

  6. Berger, L.-M., Puschmann, R., Spatzier, J., and Matthews, S. Potential of HVAF spray processes. Therm. Spray Bull., 2011, 6, 16–20.

  7. Sartwell, B. D., Legg, K. O., Zimmerman, J., Reynolds, M., Drennan, A., Gribble, J., et al. Validation of HVOF thermal spray coatings as a replacement for hard chrome plating on hydraulic/pneumatic actuators. U.S Department of Defense: Environmental Security Technology Certification Program, 2006.
/HVOF%20on%20Hydraulic%20Actuators%20-%20Final%20Report.pdf (accessed 21.02.2015).

  8. Davis, J. R. Surface Engineering for Corrosion and Wear Resistance. ASM International, 2001.

  9. Kurlov, A. S., Leenaers, A., van der Berghe, S., Schibetta, M., Schröttner, H., and Rempel, A. A. Microstructure of nanocrystalline WC powders and WC–Co hard alloys. Reviews of Advanced Materials Science, 2011, 27, 165–172.

10. Juhani, K. Reactive Sintered Chromium and Titanium Carbide-Based Cermets. PhD Thesis. Tallinn University of Technology, 2009.

11. Jõeleht, M., Pirso, J., Juhani, K., Viljus, M., and Traksmaa, R. The formation of reactive sintered (Ti, Mo)C–Ni cermet from nanocrystalline powders. Int. J. Refract. Met. H, 2014, 43, 284–290.

12. Sarjas, H., Kulu, P., Juhani, K., and Vuoristo, P. Novel WC–Co spray powders and HVOF sprayed coatings on their bases. In Proceedings of the 28th International Conference on Surface Modification Technologies: 28th International Conference on Surface Modification Technologies, Tampere, Finland, 16.–18.06.2014. Valardoc, 35–42.

13. Kleis, I. and Kulu, P. Solid Particle Erosion: Occurrence, Prognostification and Control. Springer, 2008.


Back to Issue