eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Time-efficient automated analysis for fibre orientations in steel fibre reinforced concrete; pp. 28–36

Full article in PDF format | doi: 10.3176/proc.2016.1.02

Emiliano Pastorelli, Heiko Herrmann


One of the most important factors to determine the mechanical properties of a fibre composite material is the orientation of the fibres in the matrix. Their orientation might differ in distinct parts of the structural element as dependent on the casting techniques and mould materials. This paper presents an algorithm to retrieve information on a single fibre’s orientation out of SFRC samples scanned through a µCT scanner. The software implemented with the algorithm includes a data filtering component to remove the noise from the data sets and prepare them correctly for analysis. Due to its short computational times and its almost complete lack of need for external user intervention, the software is able to process and analyse large batches of data in short periods by providing results in a variety of visual and numerical formats.



  1. Bentur, A. and Mindess, S. Fibre Reinforced Cementitious Composites. Taylor & Francis, London and New York, 2007.

  2. Tejchman, J. and Kozicki, J. Experimental and Theoretical Investigations of Steel-fibrous Concrete. 1st ed. Springer Series in Geomechanics and Geoengineering. Springer, 2010.

  3. Eik, M., Lõhmus, K., Tigasson, M., Listak, M., Puttonen, J., and Herrmann, H. DC-conductivity testing combined with photometry for measuring fibre orientations in SFRC. J. Mater. Sci., 2013, 48(10), 3745–3759.

  4. Eik, M. and Herrmann, H. Raytraced images for testing the reconstruction of fibre orientation distributions. Proc. Estonian Acad. Sci., 2012, 61, 128–136.

  5. Grünewald, S., Laranjeira, F., Walraven, J. C., Aguado, A., and Molins, C. Influence of fibre orientation on the performance of steel fibre-reinforced concrete. In 8th RILEM International Symposium on Fiber Reinforced Concrete: Challenges and Opportunities (BEFIB 2012). Rilem Publications SARL, 2013, 313–325.

  6. Wuest, J., Denarie, E., Bruhwiler, E., Tamarit, L., Kocher, M., and Gallucci, E. Tomography analysis of fiber distribution and orientation in ultra high-performance fiber-reinforced composites with high-fiber dosages. Exp. Techniques, 2009, 33(5), 50–55.

  7. Le, T. H., Dumont, P. J. J., Orgeas, L., Favier, D., Salvo, L., and Boller, E. X-ray phase contrast microtomography for the analysis of the fibrous microstructure of SMC composites. Composites Part A: Appl. Sci. Manuf., 2008, 39(1), 91–103.

  8. Herrmann, H., Eik, M., Berg, V., and Puttonen, J. Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica, 2014, 49(8), 1985–2000.

  9. Eik, M., Puttonen, J., and Herrmann, H. An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Compos. Struct., 2015, 121, 324–336.

10. Suuronen, J. P., Kallonen, A., Eik, M., Puttonen, J., Serimaa, R., and Herrmann, H. Analysis of short fibres orientation in Steel Fibre Reinforced Concrete (SFRC) using X-ray tomography. J. Mater. Sci., 2013, 48(3), 1358–1367.

11. Schnell, J., Schladitz, K., and Schuler, F. Richtungsanalyse von Fasern in Betonen auf Basis der Computer-Tomographie. Beton- und Stahlbetonbau, 2010, 105(2), 72–77.

12. Vicente, M. A., Gonzalez, D. C., and Minguez, J. Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans. Nondestructive Testing and Evaluation, 2014, 29(2), 164–182.

13. Ponikiewski, T., Katzer, J., Bugdol, M., and Rudzki, M. Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography. Mater. Struct., 2014,

14. Redenbach, C., Rack, A., Schladitz, K., Wirjadic, O., and Godehardt, M. Beyond imaging: on the quantitative analysis of tomographic volume data. Int. J. Mater. Res., 2012, 103(2), 217–227.

15. Johnson, H. J., McCormick, M., Ibáñez, L., and the Insight Software Consortium. The ITK Software Guide. Updated for ITK version 4.8. (accessed 26.10.2015).

16. Frangi, A. F., Niessen, W. J., Nederkoorn, P. J., Bakker, J., Mali, W. P. T. M., and Viergever, M. A. Quantitative analysis of vascular morphology from 3D MR angiograms: in vitro and in vivo results. Magnet. Reson. Med., 2001, 45, 311–322.<311::AID-MRM1040>3.0.CO;2-7

17. Lehmann, G. Label object representation and manipulation with ITK. 2007. (accessed 30.04.2015).

18. Pastorelli, E. and Herrmann, H. A small-scale, low-budget semi-immersive Virtual Environment for Scientific Visualization and Research. Procedia Computer Science, 2013, 25(iii–iv), 14–22.

19. Dillencourt, M. B., Samet, H., and Tamminen, M. A general approach to connected-component labeling for arbitrary image representations. J. ACM, 1992, 39(2), 253–280. (accessed 30.04.2015).

20. Kroon, D. J. Hessian based Frangi Vesselness filter. 2010. (accessed 30.04.2015).

21. Kindlmann, G., Bigler, J., and Van Uitert, D. NRRD file format. 2008. (accessed 30.04.2015).

22. Schroeder, W., Martin, K. M., and Lorensen, W. E. The Visualization Toolkit (2nd ed.): An Object-oriented Approach to 3D Graphics. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1998.

23. Herrmann, H. and Eik, M. Some comments on the theory of short fibre reinforced material. Proc. Estonian Acad. Sci., 2011, 60, 179–183.

Back to Issue